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1 Introduction

Chetty (2009) establishes that selection into tax avoidance biases the elasticity of taxable income,

the key sufficient statistic for measuring deadweight loss. This paper derives the analogous result

for tax incidence: when agents can exit the observed tax base, measured incidence overstates the

burden on those who remain. The logic is simple. Agents who would bear the highest incidence—

those who cannot pass the tax forward—have the strongest incentive to pay the cost of exit. When

they leave, only high-passthrough “survivors” remain in the data. Standard estimates therefore

average over a selected sample, mechanically overstating incidence.

Correcting this bias requires only measuring how much of the tax base exits, a sufficient

statistic I denote 𝜃 . Under monotone selection, where low-passthrough agents are more likely to

exit, 𝜃 bounds true incidence from below without requiring identification of which agents exit or

why. The intuition is simple: if the agents who exit are those who would have absorbed the most

tax, then averaging over survivors overstates incidence, and the share that exits tells us by how

much. The correction does not depend on the structural parameters generating selection: not the

demand system that determines passthrough heterogeneity, not the fixed costs that govern exit

decisions, not the distribution of firm productivity. It requires only that low-passthrough agents

are more likely to leave, and a measure of how much of the tax base they take with them. The

same correction applies wherever differential exit is possible, and that portability is this paper’s

core theoretical contribution.

The central empirical contribution is an application to tariffs, where exit takes the form of

rerouting goods through third countries to avoid duties. Tariffs offer an ideal setting for three

reasons. First, rerouting leaves a detectable footprint in bilateral trade data. Second, the 2018

U.S. tariffs on China provide sharp policy variation, with rates rising from near zero to around

20 percent on thousands of products. Third, existing estimates present a puzzle that selection

can resolve. A large body of work using customs data finds near-complete passthrough, imply-

ing U.S. importers bore the full incidence of the 2018 tariffs—a burden which makes its welfare

cost comparable to top income taxes (Finkelstein and Hendren 2020).
1

This is striking: for an

economy as large as the United States, we would expect foreign exporters to absorb some of the

burden. But the customs data typically used to study passthrough conditions on firms and prod-

ucts that continue shipping directly; exporters who reroute exit the sample. When goods are

tracked from true origin to final destination regardless of routing, the picture changes. Evidence

from washing machines suggests that eliminating low-cost avoidance options can substantially

raise measured passthrough (Flaaen, Hortaçsu, and Tintelnot 2020). My framework reconciles

these findings: customs-based estimates correctly measure passthrough among survivors, but

1. See, for example, Amiti, Redding, and Weinstein (2019, 2020), Cavallo et al. (2021), and Fajgelbaum et al. (2020).
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survivors are selected. Given that markups are heterogeneous in practice (Gopinath and Itskhoki

2010; De Loecker, Eeckhout, and Unger 2020; Edmond, Midrigan, and Xu 2023), the monotone

selection condition is plausible, and measuring exit provides the correction.

I measure exit by extending the trade footprint methodology of Freund (2024), which screens

bilateral trade data for patterns consistent with rerouting. The approach yields lower and upper

bounds on the share of trade that exits the direct channel. By 2023, 30–40 percent of tariffed prod-

ucts exhibit evidence of rerouting, with aggregate exit reaching 15 percent of baseline China-U.S.

trade. These estimates of 𝜃 imply true passthrough falls from near 100 percent to approximately

85 percent in aggregate. Since exit is concentrated in business inputs, the correction is largest

there—approximately 80 percent for intermediate and capital goods, near 100 percent for con-

sumer goods. I extend the methodology to estimate the elasticity of exit with respect to tariff

incentives, the key input for welfare analysis. The behavioral response is large: a 10 percentage

point increase in the tariff raises the probability of exit by 10–30 percentage points on the exten-

sive margin and increases the exiting share by 2–11 percentage points on the intensive margin.

Identification comes from within-product variation in tariff exposure; event studies show flat

pre-trends, and placebo tests using European and Canadian destinations show no response to the

U.S. tariff wedge.

These estimates allow me to re-evaluate the welfare cost of tariffs using the marginal cost of

public funds (MCPF), which measures the welfare cost to society of raising one dollar of govern-

ment revenue. The MCPF combines domestic incidence in the numerator (who bears the burden)

with the fiscal externality in the denominator (how much the tax base shrinks when rates rise).

For a lump-sum tax that induces no behavioral distortions, the MCPF equals one. Existing es-

timates place the MCPF of the 2018 tariffs between 1.2 and 1.6 (Finkelstein and Hendren 2020;

Jaccard 2021), comparable to top income taxes. My correction affects both components: the nu-

merator falls because true incidence is 85 percent, not 100 percent; the denominator rises because

exit erodes the tax base. These forces partially offset, with sharp heterogeneity by end-use. For

consumer goods, where exit is minimal, the MCPF remains near one throughout the post-tariff

period. For intermediate and capital goods, the high exit elasticity generates a substantial fiscal

externality, pushing the upper bound to around 1.5 by 2023, though the lower bound remains

near one.

The welfare cost depends on how much exit occurs, which in turn depends on policy. Alessan-

dria et al. (2025) show that one lever is revenue use: deploying tariff revenue to offset distortionary

taxes lowers the net welfare cost. I identify a different lever: the domestic tax code affects the

incentive to exit in the first place. When importers can deduct tariff-inclusive costs from tax-

able income, their effective burden falls. This compresses the wedge between compliant and

non-compliant channels, discouraging exit. Higher corporate tax rates therefore serve as implicit
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enforcement, reducing avoidance even without explicit penalties. The 2017 Tax Cuts and Jobs Act

cut the corporate rate from 35 to 21 percent, widening the wedge and increasing the incentive

to reroute. I estimate this reform cost the U.S. between 2 and 9 billion dollars in foregone tariff

revenue.

The sufficient statistics approach is deliberately narrow and partial equilibrium in scope.

Transshipment is one channel of tariff avoidance among many; firms also misreport value to

fall under de minimis thresholds (Fajgelbaum and Khandelwal 2024), break up shipments into

smaller parcels, or misclassify goods (Fisman and Wei 2004). My estimates are therefore conser-

vative lower bounds on total exit, and the correction applies regardless of whether exit reflects

physical rerouting, supply chain reorganization, or shifts in sourcing. The welfare analysis is

partial equilibrium, abstracting from general equilibrium effects on wages, prices, and terms of

trade. The 85 percent passthrough reflects import prices paid by U.S. firms, but ultimate consumer

incidence depends on whether these costs are absorbed by domestic firms or passed through to

retailers (Amiti, Itskhoki, and Konings 2019; Flaaen et al. 2025). These limitations suggest the

true correction could be larger, and the welfare implications more nuanced, than my baseline

estimates indicate.

Related Literature. This paper relates to three strands of literature.

First, this paper contributes to the public finance literature on how tax avoidance biases mea-

sured behavioral parameters. Chetty (2009) established that selection into avoidance biases the

elasticity of taxable income, requiring a correction for welfare analysis. I derive the analogous

result for tax incidence: when agents can exit the observed tax base, measured passthrough over-

states domestic burden, and the exit share provides a sufficient statistic for correction. The closest

empirical predecessor is Kopczuk et al. (2016), who show that moving diesel tax collection up-

stream raises both passthrough and revenue because evasion capacity differs across agents. Their

finding demonstrates that statutory incidence can matter when avoidance opportunities are het-

erogeneous, but they do not derive a general correction formula. Benzarti and Carloni (2019)

document that VAT incidence varies substantially across firms, with owners capturing most of

the benefit from rate cuts—further evidence that passthrough heterogeneity is empirically impor-

tant. My sufficient statistic approach provides the correction these papers lack. The deductibility

channel I identify extends the enforcement literature (Allingham and Sandmo 1972; Slemrod and

Yitzhaki 2002; Slemrod 2019) by showing that the tax code contains implicit enforcement margins

operating automatically through deductibility, without explicit audits or penalties.

Second, this paper builds on a methodology for inferring illicit trade from official statistics.

Fisman and Wei (2004) introduced the trade discrepancy approach, comparing exporter and im-

porter reports to quantify evasion; Javorcik and Narciso (2008) extended it to show evasion is
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concentrated in differentiated products where customs verification is difficult. Fisman, Mous-

takerski, and Wei (2008) provided early intuition that indirect trade via Hong Kong rises with

Chinese tariff rates due to costly evasion; I generalize their framework to allow heterogeneous

markups and selection bias in measured passthrough. My empirical approach extends the screen-

ing methodology of Freund (2024), who flag products showing trade patterns consistent with

rerouting. Recent work confirms that rerouting is empirically prevalent: Do et al. (2025) use bill

of lading data to show that 70 percent of U.S. containerized imports are transshipped through

hubs; Deng et al. (2025) estimate that $5.5 billion of the 2018 surge in U.S. imports from Mexico

was circumvention; Iyoha et al. (2025) find that rerouting accounts for nearly 9 percent of Viet-

nam’s export growth to the United States. Alfaro and Chor (2025) distinguish transshipment from

genuine supply chain reorganization, noting that China’s value added in third-country exports

remains substantial. My sufficient statistics correction applies regardless of mechanism—whether

exit reflects physical rerouting, supply chain integration, or sourcing shifts, the bias in measured

incidence is the same.
2

Third, this paper reconciles findings from the tariff incidence literature. Studies using bilateral

customs data classified by country of origin find near-complete passthrough of the 2018 tariffs

(Amiti, Redding, and Weinstein 2019, 2020; Fajgelbaum et al. 2020). These estimates correctly

measure passthrough among firms that continue shipping directly, but when firms reroute, they

exit the sample. Cavallo et al. (2021) use BLS microdata that tracks identical goods over time

and also find near-complete passthrough at the border; their sample is weighted toward con-

sumer goods, where I find essentially no transshipment, so their estimates are consistent with my

framework. Similarly, Flaaen, Hortaçsu, and Tintelnot (2020) study washing machines—another

consumer good—and find that country-specific tariffs allowed firms to relocate, muting price ef-

fects, but a global tariff that closed this option caused passthrough to exceed 100 percent. My

contribution is to formalize the selection mechanism, show that the bias is concentrated in busi-

ness inputs where transshipment is prevalent, and derive the sufficient statistic correction for

welfare analysis.

Roadmap. Section 2 develops a partial equilibrium model of avoidance and passthrough. Sec-

tion 3 describes the data and methodology used to measure transshipment, which Section 4 uses

to present the main empirical results, including the magnitude of avoidance and the elasticity

estimates. Section 5 uses these estimates to re-evaluate the tariff’s welfare cost and conduct the

TCJA counterfactual. Section 6 concludes.

2. Mishra, Subramanian, and Topalova (2008) study tariff evasion in India and find a substantially smaller elasticity

than my estimates, likely reflecting differences in enforcement capacity and the type of evasion.
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2 A Model of Endogenous Exit

This section presents the economic logic behind the paper’s main results: (i) when exit from

the observed tax base is costly, low-passthrough agents are more likely to exit, (ii) this selection

biases measured incidence upward, and (iii) the exit share is a sufficient statistic for correcting the

bias. Section 2.1 sets up the environment and Section 2.2 characterizes pricing and passthrough

heterogeneity. Section 2.3 introduces the exit margin and derives the selection result. Section 2.4

shows how selection biases measured incidence and derives the sufficient statistic correction.

Section 2.5 maps the framework to welfare analysis. Finally, Section 2.6 shows how other tax

instruments affect the return to exit.

2.1 Environment

Consider a static partial equilibrium setting with monopolistic competition over differentiated

varieties indexed by 𝑖 ∈ I. Each seller sets a price 𝑝𝑖 and faces an ad valorem tax 𝜏𝑑 ≥ 0. The

gross-of-tax price is 𝑝𝑖 = (1 + 𝜏𝑑)𝑝𝑖 .

Buyers. Buyers submit demand for each variety based on its gross price 𝑝𝑖 and a price aggre-

gator P. Formally, the demand for variety 𝑖 takes the form

𝑞𝑖 = 𝐷𝑖 (𝑝𝑖 | P), P ≡ P(P−𝑖 ;Θ).

P is exogenous at the firm level, corresponding to a standard monopolistic competition setup in

which each firm is small relative to the market and takes the price distribution of rivals as given.

Denoting the elasticity of demand as 𝜀𝑖 > 1, I assume that demand is weakly Kimball (1995) with

superelasticity

𝜅𝑖 (𝑝𝑖 | P) ≡ −
𝜕 ln 𝜀𝑖 (𝑝𝑖 | P)

𝜕 ln 𝑝𝑖
≤ 0.

When 𝜅 < 0, elasticity rises with price. Under CES (𝜅 = 0), elasticity is constant. Additional

regularity conditions are imposed in Appendix A.1.

Sellers. Each firm 𝑖 ∈ I has constant marginal cost 𝑚𝑖 , drawn independently from a contin-

uous distribution 𝐺 with support [𝑚,𝑚̄] ⊂ (0,∞) and density 𝑔(𝑚) > 0. The distribution is

independent of policy and of the aggregator P. Each firm solves

𝜋𝑖 (𝑚𝑖) = max

𝑝𝑖≥𝑚𝑖

(𝑝𝑖 −𝑚𝑖)𝐷𝑖 ((1 + 𝜏𝑑)𝑝𝑖 | P).
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The framework applies to any ad valorem tax where agents can exit the observed base. I

develop the model in general terms but use tariffs as the running example throughout: sellers are

foreign exporters, buyers are domestic importers, and exit takes the form of rerouting through

third countries.

2.2 Pricing and Passthrough

Before analyzing behavioral responses to taxation, I first characterize the firm’s pricing decision

and how tax passthrough varies with marginal cost. These results establish the heterogeneity

that drives selection when exit becomes possible.

The firm’s first-order condition yields a standard Lerner condition: the optimal markup is

inversely proportional to the demand elasticity. Appendix A.2 verifies that the profit function

is strictly concave and establishes the following comparative statics: firms with higher marginal

costs charge higher prices, sell lower quantities, earn lower profits, and have lower markups.

The key object for incidence is passthrough: how much of a tax increase is reflected in the

gross price.

Proposition 1 (Passthrough heterogeneity). Holding P fixed, the passthrough of the tax onto the
gross price of variety 𝑖 is

𝛽𝑖 ≡
𝑑 ln 𝑝𝑖

𝑑𝜏𝑑
=

1

1 + 𝜏𝑑
· 𝜀 (𝑝𝑖) − 1

𝜀 (𝑝𝑖) − 1 − 𝜅 (𝑝𝑖)
, (1)

where 𝑝𝑖 = (1 + 𝜏𝑑)𝑝∗𝑖 (𝑚𝑖). When 𝜅 = 0 (CES), passthrough is homogeneous across firms. When
𝜅 < 0 (Kimball), passthrough is monotonically increasing in marginal cost: 𝜕𝛽𝑖/𝜕𝑚𝑖 > 0.

Proof. See Appendix A.4. □

Equation (1) decomposes passthrough into a mechanical factor 1/(1 + 𝜏𝑑) and a curvature

factor (𝜀 − 1)/(𝜀 − 1 − 𝜅).3 The intuition for heterogeneous passthrough under Kimball demand

is as follows. Low-cost firms charge high prices and earn high markups. At these high prices,

they face elastic demand (since 𝜅 < 0 implies elasticity rises with price). When taxes increase,

maintaining their price would push them further up the demand curve where elasticity is even

higher. To avoid losing market share, they must absorb part of the tax by compressing their

markup, resulting in low passthrough. In the tariff context, these are the most productive foreign

exporters—they absorb the largest share of a tariff increase. High-cost firms, by contrast, charge

3. Proposition 1 characterizes firm-level passthrough taking the price index P as given, standard in monopolistic

competition where individual firms are atomistic. Industry-level comparative statics, where aggregate tariff changes

affect P, involve additional equilibrium effects: higher tariffs raise the price index, which shifts demand toward all

varieties and puts upward pressure on markups.
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lower prices where demand is less elastic. They can pass through most of the tax without losing

as much volume. These are the marginal exporters, who pass most of the tariff on to domestic

buyers.

Under CES demand (𝜅 = 0), elasticity is constant regardless of price, so all firms have iden-

tical passthrough 𝛽 = 1/(1 + 𝜏𝑑) and no heterogeneity arises. Variable markups and heteroge-

neous passthrough arise naturally under non-CES demand, as in Gopinath and Itskhoki (2010)

and Melitz and Ottaviano (2008). The Kimball specification provides a tractable parameterization

that nests CES as a special case.

To summarize: low-cost firms have high markups, high profits, and low passthrough; high-

cost firms have low markups, low profits, and high passthrough. This heterogeneity is central to

what follows. In the next section, I introduce the possibility that firms can exit the observed tax

base—and show that it is precisely the low-passthrough firms who choose to do so.

2.3 Selection into Exit

I now introduce the possibility that firms can exit the observed tax base. Exiting requires paying

a fixed cost 𝐹 > 0 but allows the firm to face a lower effective tax rate 𝜏𝑎 ∈ [0, 𝜏𝑑). The fixed

cost captures setup expenses for exit. With tariffs, that may include establishing transshipment

routes, contracting with intermediaries, or relabeling goods. While 𝐹 likely varies across products

(a possibility explored in Appendix A.5), it is best interpreted as a sunk entry cost. This interpre-

tation implies hysteresis: once the cost is paid and the network is built, firms may not revert to

direct shipping even if tariffs are later removed. Furthermore, 𝐹 may decline endogenously over

time as firms learn optimal routing strategies and intermediaries specialize in avoidance services,

suggesting that long-run exit elasticities could exceed short-run responses.

The parameter 𝜏𝑎 reflects the expected cost of operating outside the observed base, whether

through enforcement risk, explicit taxes in the exit channel, or other frictions. The key object is

the wedge 𝜏𝑑 − 𝜏𝑎: a larger wedge makes exit more attractive.

Given the results of Section 2.2, we can characterize selection by comparing optimized profits

across channels. For any marginal cost𝑚, define the optimized value in a channel with gross-price

multiplier 1 + 𝜏𝑟 :

𝑉 (𝑚, 1 + 𝜏𝑟 ) ≡ max

𝑝≥𝑚
(𝑝 −𝑚)𝐷 ((1 + 𝜏𝑟 )𝑝), 𝜋𝑑 (𝑚) =𝑉 (𝑚, 1 + 𝜏𝑑), 𝜋𝑎 (𝑚) =𝑉 (𝑚, 1 + 𝜏𝑎) − 𝐹,

and the exit-vs-stay difference

𝐻 (𝑚;𝜏𝑑 , 𝜏𝑎) ≡ 𝜋𝑎 (𝑚) − 𝜋𝑑 (𝑚) =𝑉 (𝑚, 1 + 𝜏𝑎) −𝑉 (𝑚, 1 + 𝜏𝑑) − 𝐹 .
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Proposition 2 (Selection into exit). Under D1–D4 (see Appendix A.1), there exists a unique cutoff
𝑚(𝜏𝑑 , 𝜏𝑎) ∈ [𝑚,𝑚̄] such that

𝑚 < 𝑚(𝜏𝑑 , 𝜏𝑎) ⇒ Exit, 𝑚 ≥𝑚(𝜏𝑑 , 𝜏𝑎) ⇒ Stay.

If the cutoff is interior, then
𝜕𝑚

𝜕𝜏𝑑
> 0 and

𝜕𝑚

𝜕𝜏𝑎
< 0.

Proof. See Appendix A.3. □

The intuition is straightforward. From Section 2.2, low-cost firms have high markups, high

profits, and low passthrough. When the tax increases, these firms must absorb most of the in-

crease themselves, cutting directly into their profit margins. They therefore have the strongest

incentive to pay 𝐹 and exit. High-cost firms, by contrast, pass through most of the tax to buyers.

The tax hits their profits less severely, so the gain from exit does not justify the fixed cost.

Let 𝜃 (𝜏𝑑 , 𝜏𝑎) ≡ Pr(𝑚 < 𝑚(𝜏𝑑 , 𝜏𝑎)) denote the share of firms that exit; the remaining 1 − 𝜃 are

survivors. By Proposition 2, 𝜕𝜃/𝜕𝜏𝑑 > 0 and 𝜕𝜃/𝜕𝜏𝑎 < 0: widening the wedge increases exit. The

magnitude of this response is captured by the exit elasticity:

𝜓 ≡ 𝜕 ln𝜃

𝜕Δ
> 0, Δ ≡ ln

1 + 𝜏𝑑
1 + 𝜏𝑎 . (2)

The exit elasticity𝜓 depends on demand curvature. When𝜅 is more negative, passthrough hetero-

geneity is greater, so the profit differential between low-cost and high-cost firms under taxation

is larger. This amplifies the response to wedge changes: more curvature means more selection.

Figure 1 illustrates the mechanism. The distribution 𝑔(𝑚) shows marginal costs; the upward-

sloping line shows passthrough 𝛽 (𝑚) under Kimball demand. The cutoff 𝑚 partitions the distri-

bution: low-cost firms (shaded) exit, while high-cost firms stay. A tax increase shifts the cutoff

rightward, causing additional low-passthrough firms to exit.

In the tariff context, exit takes the form of rerouting through third countries. 𝐹 captures setup

costs such as establishing transshipment routes and contracting with intermediaries. 𝜏𝑎 reflects

expected enforcement costs or tariffs in the hub country. If rerouting also involves higher per-

unit costs—longer shipping routes, intermediary fees—this reinforces rather than undermines the

selection story, since rerouted varieties exit the observed sample entirely. For income taxes, exit

might mean offshore sheltering; for sales taxes, cross-border shopping. The sufficient statistic 𝜃

is common across settings.
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Figure 1: Selection into Exit under Heterogeneous Passthrough

𝑔(𝑚)

𝑚(𝜏𝑑
0
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Exit at 𝜏𝑑
0

Additional exit at 𝜏𝑑
1
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CES Passthrough Kimball Passthrough

Note: The distribution 𝑔(𝑚) shows the density of marginal costs. Under CES (flat line), passthrough is constant.

Under Kimball (upward-sloping line), passthrough increases with cost. The exit cutoff 𝑚(𝜏𝑑 , 𝜏𝑎) partitions the

distribution: low-cost firms (shaded area) exit, while high-cost firms stay in the observed base. A tax increase

shifts the cutoff rightward (dashed to solid line), causing additional low-passthrough firms to exit.

2.4 Selection Bias in Measured Incidence

Propositions 1 and 2 establish that (i) low-cost firms have low passthrough and (ii) low-cost firms

are more likely to exit. Combined, these results imply that incidence estimates based on observed

transactions are biased upward. This section formalizes the bias and derives a sufficient statistic

correction.

The central issue is that standard data sources capture only agents who remain in the observed

tax base after the policy change. Agents who exit are unobserved and mechanically drop out of

the estimating sample. This creates a gap between what the regression identifies and the cohort-

level parameter of interest.

To formalize the bias, let 𝑆𝑖 ∈ {0, 1} indicate whether agent 𝑖 remains in the observed base

(𝑆𝑖 = 1) or exits (𝑆𝑖 = 0). Agents with 𝑆𝑖 = 1 are survivors; those with 𝑆𝑖 = 0 are exiters. Consider

a regression of price changes on tax changes, run on observed transactions:

Δ ln𝑝𝑖 = 𝛼 + 𝛽 Δ𝜏𝑑𝑖 + 𝜀𝑖 . (3)

Since Δ ln𝑝𝑖 = 𝛽𝑖Δ𝜏
𝑑

for an agent who stays, the OLS coefficient identifies the survivor average:

𝛽survivor = E[𝛽𝑖 | 𝑆𝑖 = 1] .
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The object of interest is 𝛽cohort ≡ E[𝛽𝑖], the average passthrough for the pre-policy cohort. The

following identity makes the selection bias transparent.

Proposition 3 (Survivor vs. cohort bias). Let Pr(𝑆𝑖 = 1) be the survivor share. Then

𝛽survivor ≡ E[𝛽𝑖 | 𝑆𝑖 = 1] = E[𝛽𝑖]︸︷︷︸
𝛽cohort

+Cov(𝛽𝑖, 𝑆𝑖)
Pr(𝑆𝑖 = 1) . (4)

Proof. E[𝛽𝑖 | 𝑆𝑖 = 1] = E[𝛽𝑖𝑆𝑖]/E[𝑆𝑖] =
(
E[𝛽𝑖]E[𝑆𝑖] + Cov(𝛽𝑖, 𝑆𝑖)

)
/Pr(𝑆𝑖 = 1). □

The selection term Cov(𝛽𝑖, 𝑆𝑖)/Pr(𝑆𝑖 = 1) is positive whenever low-passthrough agents are

more likely to exit. Two benchmarks clarify when bias arises. Under CES (𝜅 = 0), all firms

have identical passthrough 𝛽𝑖 = 1/(1 + 𝜏𝑑), so Cov(𝛽𝑖, 𝑆𝑖) = 0 and 𝛽survivor = 𝛽cohort. Under

Kimball demand (𝜅 < 0), passthrough increases with cost, low-cost firms exit, and Cov(𝛽𝑖, 𝑆𝑖) > 0

generates upward bias. Given heterogeneous markups in practice (De Loecker, Eeckhout, and

Unger 2020), survivor-based estimates likely overstate the burden on domestic buyers.

A sufficient statistic correction. The magnitude of the bias can be bounded directly. By the

law of total expectation,

𝛽cohort = (1 − 𝜃 )E[𝛽𝑖 | 𝑆𝑖 = 1] + 𝜃E[𝛽𝑖 | 𝑆𝑖 = 0] .

Using 𝛽survivor = E[𝛽𝑖 | 𝑆𝑖 = 1] and non-negative passthrough,

𝛽cohort ∈
[
(1 − 𝜃 )𝛽survivor, 𝛽survivor

]
.

This bounds the bias using only the exit share 𝜃 .
4

Correcting measured incidence requires quan-

tifying how much exit occurs, not the structural parameters generating selection. Importantly,

the correction requires only 𝜃 , not identification of which agents exit or why. If low-passthrough

agents differentially exit for any reason, measured incidence is biased upward, and 𝜃 corrects it.

This bound has a key methodological property: it requires only 𝜃 , not identification of the

selection mechanism. The correction does not require observing which agents exit, estimating

structural parameters such as the fixed cost 𝐹 or demand curvature 𝜅, or testing whether low-

passthrough agents are more likely to exit. If monotone selection holds for any reason—whether

through the mechanism formalized above or some alternative—the bound applies. This portability

4. This sufficient statistic parallels the share function in Fisman, Moustakerski, and Wei (2008), where the ag-

gregate evasion share enters welfare calculations. Here, 𝜃 plays an analogous role but also determines the sample-

selection bias in measured passthrough, linking evasion to incidence through the same parameter.
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is a feature of the sufficient statistics approach: the same object corrects incidence bias in any

setting where agents can differentially exit the observed tax base.

The theoretical 𝜃 is the mass of firms selecting into exit. Whether this is the relevant empirical

object depends on how passthrough is estimated. If the regression weights observations equally,

𝜃 is the share of firms that exit. If the regression is value-weighted—as is standard in the tariff

literature—then 𝜃 is the share of trade value that exits. The sufficient statistic correction applies

in either case; what changes is the appropriate measure. In the empirical analysis, I measure 𝜃 as

the share of trade value rerouted, matching the value-weighted regressions in the literature.

Application to tariffs. In the tariff literature, survivor-based estimates come from customs

unit values or import price indices constructed from direct shipments. Studies using these data

estimate 𝛽survivor by construction, since firms that reroute through third countries exit the sam-

ple when tariffs induce origin switching. This describes the estimand in Amiti, Redding, and

Weinstein (2019), Fajgelbaum et al. (2020), and the unit-value components of Cavallo et al. (2021).

When is there no selection bias? When firm-product transactions are tracked over time with

the cohort fixed at the micro level, regardless of routing. This requires observing the same

exporter-importer pair before and after the tariff whether it ships direct or reroutes. Parts of

Cavallo et al. (2021) and Flaaen, Hortaçsu, and Tintelnot (2020) implement this approach. The

findings from Flaaen, Hortaçsu, and Tintelnot (2020) illustrate the broader point that exit op-

tions shape measured passthrough. For earlier country-specific tariffs on washing machines, they

document extensive country-hopping through relocation, resulting in minimal or even negative

passthrough. For the 2018 global tariff, which eliminated the benefit of relocation, passthrough

exceeded 100 percent. When low-cost exit is available, firms use it; when it is not, they absorb or

pass through the tariff. The contrast is consistent with exit shaping measured incidence, though

the specific mechanism in their setting—relocation under oligopolistic competition—differs from

the transshipment margin I study here.

2.5 Sufficient Statistics for Welfare

The theoretical results clarify how selection into exit affects the welfare cost of taxation. The

marginal cost of public funds (MCPF) combines domestic incidence in the numerator and the

fiscal externality from behavioral responses in the denominator. I now show how the model’s

parameters map into this formula.

Numerator: Domestic incidence. Hendren (2016) shows that the welfare effect of a tax is the

willingness to pay to avoid it. Applying the envelope theorem, Finkelstein and Hendren (2020)

show this is simply domestic incidence, or passthrough. Proposition 3 shows that true cohort
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passthrough is bounded below by (1 − 𝜃 )𝛽survivor and above by 𝛽survivor. This provides a portable

correction for the numerator of the MCPF.

Denominator: Fiscal externality. The total fiscal externality, 𝜂total, is the elasticity of the tax

base with respect to the tax rate. It has two components: the externality from standard behavioral

responses such as substitution, 𝜂other, and the externality from exit, 𝜂exit. The total is the sum:

𝜂total = 𝜂other + 𝜂exit.

The exit externality depends on how rapidly the tax base (the survivor share 1−𝜃 ) shrinks as

the effective wedge Δ = ln
1+𝜏𝑑
1+𝜏𝑎 increases. This is a function of the exit elasticity𝜓 .

5

Combining these components:

MCPF ∈
[
𝛽survivor(1 − 𝜃 )

1 + 𝜂total

,
𝛽survivor

1 + 𝜂total

]
=

[
𝛽survivor(1 − 𝜃 )

1 + 𝜂other − 𝜃
1−𝜃𝜓

,
𝛽survivor

1 + 𝜂other − 𝜃
1−𝜃𝜓

]
, (5)

where 𝜂other captures all other fiscal externalities, taken as given from other studies. A larger 𝜓

increases the MCPF through the denominator. When agents are highly responsive to the effective

wedge, the base erodes rapidly, so raising rates generates less revenue per unit of welfare cost.

Appendix A.6 provides a self-contained derivation of this formula from the social planner’s prob-

lem, showing how domestic incidence 𝛽 and the fiscal externality 𝜂 emerge from the first-order

conditions of welfare maximization subject to a revenue constraint.

This expression clarifies what must be measured. To correct the numerator, we need the exit

share 𝜃 . To correct the denominator, we need the exit elasticity 𝜓 . Section 5 combines these

estimates to evaluate the MCPF for tariffs.

2.6 Deductibility as Implicit Enforcement

The return to exit depends not only on the focal tax but also on the broader tax environment.

When payments under one tax are deductible against another, that deductibility compresses the

effective wedge between staying and exiting. This creates policy spillovers: reforms to one in-

strument affect compliance with another.

I develop this point in the context of tariffs and the corporate income tax. When U.S. firms

import intermediate or capital goods, they deduct the tariff-inclusive cost from taxable income.

5. The fiscal externality from exit is the elasticity of the tax base with respect to the effective wedge:

𝜂exit ≡
𝜕(1 − 𝜃 )

𝜕Δ

1

1 − 𝜃 = − 𝜕𝜃
𝜕Δ

1

1 − 𝜃 = − 𝜃

1 − 𝜃𝜓 .
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This deductibility compresses the effective wedge between direct shipments and rerouting, mak-

ing exit less attractive. The corporate tax code thus acts as implicit enforcement, with higher

corporate tax rates 𝜏𝑐 or greater deductibility 𝑧 reducing the incentive to reroute.

Tax Deductibility and the Exit Wedge. Suppose the importer faces corporate tax rate 𝜏𝑐 ∈
[0, 1) with partial deductibility 𝑧 ∈ [0, 1] of tariff-inclusive input costs, where 𝑧 is the net present

value of a dollar of deductions. For intermediate inputs expensed immediately, 𝑧 = 1; for capital

expensed over time, 𝑧 < 1. After-tax unit costs in each channel are

𝐶𝑑 = (1 − 𝜏𝑐𝑧) (1 + 𝜏𝑑)𝑝, 𝐶𝑎 = (1 − 𝜏𝑐𝑧)𝑝,

yielding a cost gap

Δ𝐶ded = (1 − 𝜏𝑐𝑧)𝜏𝑑𝑝.

In the general two-wedge model, the gap is Δ𝐶wedge = (𝜏𝑑 − 𝜏𝑎)𝑝 . Equating these yields a simple

isomorphism.

Corollary 1 (Deductibility-Wedge Isomorphism). When imported inputs are deductible, the exit
problem is behaviorally equivalent to a two-wedge problem with effective exit wedge

𝜏𝑎 = 𝑧𝜏𝑐𝜏𝑑 .

With no deductibility, 𝜏𝑎 = 0.

The isomorphism implies that corporate tax policy and trade enforcement are linked. A higher

corporate tax rate 𝜏𝑐 or greater expensing 𝑧 raises the effective exit wedge 𝜏𝑎 , discouraging rerout-

ing. Conversely, cutting corporate taxes lowers implicit enforcement, increasing exit. Section 5

quantifies this effect, showing that the 2017 TCJA rate cut from 35% to 21% reduced tariff revenue

by $2–9 billion through increased rerouting.

Combining Corollary 1 with Proposition 2 yields comparative statics for domestic tax policy:

𝑑𝑚

𝑑𝜏𝑐
< 0 and

𝑑𝑚

𝑑𝑧
< 0.

Higher corporate tax rates or greater deductibility reduce exit. The cutoff𝑚 shifts left, the survivor

set expands, and the marginal firm is less inclined to exit because deductibility loads a share 𝑧𝜏𝑐

of the direct tariff into the exit channel.
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3 Measuring Tariff-Induced Rerouting

The theoretical framework in Section 2 established that selection out of the observed tax base

biases measured incidence upward, with the exit share 𝜃 and exit elasticity𝜓 as sufficient statistics

for correction. The framework is general; this section and the next specialize to tariffs, where exit

takes the form of rerouting through third countries. Rerouting leaves a detectable footprint in

bilateral trade data, unlike other exit margins such as misclassification or value misreporting,

making it possible to construct 𝜃 from public sources. It is also quantitatively significant—Do et

al. (2025) document that the majority of U.S. containerized imports pass through transshipment

hubs—and has attracted substantial policy attention, with U.S. Customs and Border Protection

launching enforcement actions against hub countries.

Two empirical tasks follow from the theory. First, measuring the level of rerouting 𝜃 to correct

the numerator of the MCPF. Second, estimating the rerouting elasticity 𝜓 to quantify the fiscal

externality in the denominator. This section develops the methodology; Section 4 presents the

empirical estimates.

While the model characterizes firm-level routing decisions, the empirical analysis operates at

the HS6 product level, where trade flows aggregate across many exporters. Appendix B formalizes

the link: under the model, the product-level rerouting share 𝜃𝑘 reflects the mass of firms below

the marginal cost cutoff, weighted by their trade volumes. The mapping is not exact because

it depends on the distribution of firm sizes within each product, but the qualitative predictions

carry through: 𝜃 rises with the wedge, and the composition of survivors shifts toward higher-cost,

higher-passthrough firms. This justifies using HS6-level variation in the empirical analysis.

I exploit the 2018 U.S. tariffs on China as a natural experiment, extending the methodology of

Freund (2024) to construct bounded measures of the share of goods originating from China but

rerouted through third countries to the United States over 2012–2023.

3.1 Data

I use annual data on bilateral trade flows from CEPII’s BACI HS-12 vintage from 2012–2023 at

the 6-digit product (HS6) level.
6

For each year 𝑡 , country pair (𝑖, 𝑗), and HS6 code 𝑘 , I observe the

customs value of shipments 𝑣𝑖→ 𝑗,𝑘,𝑡 . The goal is to identify when goods originate in China, flow

to a hub country on the first leg, and then arrive in the United States on the second leg. I restrict

potential hubs to 36 countries selected for geographic proximity to China, port infrastructure,

and pre-tariff trade relationships with both the U.S. and China (Table C.1). Leave-one-out analysis

6. BACI provides consistent bilateral flows at annual frequency with comprehensive country coverage. Monthly

UN Comtrade data have gaps, reporting lags, and reconciliation issues across partner countries that would complicate

the screening methodology.
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confirms no single hub drives the results. I deflate all values to 2017 dollars using the BLS end-use

import price index.

The tariff wedge Δ operationalizes the theory’s routing incentive, which is the gap between

the effective cost of direct shipping versus rerouting:

Δ𝑘,𝑡 ≡ log

1 + 𝜏𝑑
𝑘,𝑡

1 + 𝜏𝑎
𝑘,𝑡

= log

1 + 𝜏𝑑
𝑘,𝑡

1 + 𝑧𝑘,𝑡𝜏𝑐𝑡 𝜏𝑑𝑘,𝑡
.

Constructing this wedge requires data on two components: the direct tariff 𝜏𝑑 and the effective

cost in the rerouting channel 𝜏𝑎 = 𝑧𝜏𝑐𝜏𝑑 , which Section 2.6 shows depends on domestic tax policy.

For the direct tariff, I use Amiti, Redding, and Weinstein (2020) for monthly HS10 China-

specific rates through 2017, aggregated to annual HS6 using 2017 import shares as weights.
7

From

2018–2023, I use the Global Tariff Database from Rodrı́guez-Clare, Ulate, and Vasquez (2025),

which provides bilateral HS6 tariffs based on the methodology in Teti (2025).

For the rerouting wedge 𝜏𝑎 , I use the UN’s Broad Economic Categories (BEC) to classify

each product as consumption, intermediate, or capital. For consumption and intermediate goods,

which are fully expensed (𝑧𝑘 = 1), Corollary 1 implies 𝜏𝑎 = 𝜏𝑐𝜏𝑑 .
8

For capital goods, 𝑧𝑘,𝑡 is the net

present value of depreciation deductions under MACRS.
9

I map each capital good to its IRS tax

life and compute 𝑧𝑘,𝑡 accordingly. Figure D.1 plots the distribution of the resulting wedge Δ𝑘,𝑡 by

end-use category over time.

Products that span multiple BEC categories are included once per category, with regression

weights equal to the product’s BEC category share multiplied by its share of 2017 China-U.S.

imports. This ensures each product contributes to estimates for all relevant end-use categories in

proportion to its actual composition.

3.2 Constructing the Exit Share

Measuring rerouting is inherently difficult: unlike domestic tax evasion, there is no audit trail

or third-party reporting. I construct bounds on 𝜃 by screening bilateral trade data for patterns

consistent with Chinese goods flowing through third countries en route to the United States. The

approach extends Freund (2024), who develops conditions to identify transshipment in bilateral

7. Trade-weighted aggregation reflects the tariff rate on goods actually traded. Results are robust to alternative

aggregation schemes including time-weighting and simple averages.

8. The effective tax rate may differ from statutory due to firm-level tax planning, and not all importers face the

corporate rate (e.g., pass-through entities). This introduces measurement error in Δ. Under classical measurement

error, this attenuates elasticity estimates toward zero, making the estimates conservative.

9. For an asset with tax life 𝑇 years and depreciation schedule {𝑑𝑠 }𝑇𝑠=0
, the NPV of deductions at discount rate

𝑟 is 𝑧 =
∑𝑇

𝑠=0
(1 + 𝑟 )−𝑠𝑑𝑠 . With bonus depreciation share 𝑏, this becomes 𝑧bonus = 𝑏 + (1 − 𝑏)𝑧. Under 100% bonus

depreciation (post-TCJA), 𝑧 = 1.
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trade data; I tighten these conditions and calibrate thresholds to control the false positive rate.

The methodology complements firm-level evidence from Vietnamese customs records (Iyoha et

al. 2025) and bill-of-lading data (Do et al. 2025).

The methodology imposes five conditions that a product-hub-year triplet must satisfy simul-

taneously. First, the product must have faced U.S. tariff increases on China, which restricts atten-

tion to goods with a policy-induced incentive to reroute. Second, China’s share of U.S. imports

must have fallen below its pre-trend while a hub country’s share rose above its pre-trend, which

is a reallocation pattern consistent with rerouting. Third, China’s exports to the rest of the world

must have remained stable relative to pre-trends, ruling out the alternative that China lost global

competitiveness in the product. Fourth, the hub must face a lower U.S. tariff than China on that

specific product, ensuring an economic incentive to reroute through that hub. Fifth, China-to-

hub trade flows must be large enough to plausibly supply the hub-to-U.S. surge. If Vietnamese

firms were expanding domestic production rather than re-exporting Chinese goods, we would

not observe a corresponding increase in Chinese shipments to Vietnam for the same products in

the same years.

The screens are stringent by design. Each condition is evaluated against product-specific pre-

trends estimated from 2012–2017, so a triplet is flagged only when trade patterns deviate sharply

from historical norms. I construct two versions of the measure: a conservative version that flags

only above-trend growth on both legs of the route, and a liberal version that also captures scaling

of pre-existing routes. Both versions are calibrated against a placebo sample of products that

never faced tariff increases. I select thresholds such that the implied exit share among these

never-treated products does not exceed 1% in any pre-tariff year. This calibration deliberately

prioritizes specificity over sensitivity: the methodology is designed to minimize false positives at

the cost of missing some genuine rerouting.

For the sufficient statistics correction developed in Section 2, the precise mechanism of exit

does not matter. Selection bias in survivor-based incidence estimates arises whenever firms leave

the direct channel, regardless of whether exit reflects physical rerouting, supply chain reorga-

nization, or sourcing shifts. What matters is the share of trade that leaves the observed sample,

not how it leaves. The measure 𝜃 should therefore be interpreted as tariff-induced exit from the

direct China-U.S. channel. It is conservative: it omits other avoidance margins such as value mis-

reporting and product misclassification, and the stringent screening criteria yield a lower bound

on total exit. Implementation details are in Appendix C.
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4 Measured Transshipment

The theoretical framework established the two key parameters needed to evaluate the welfare cost

of tariffs: the level of avoidance 𝜃 and the avoidance elasticity. This section provides empirical

estimates for both. While the model in Section 2 is characterized at the firm level, its predictions

about selection and passthrough aggregate to the observable product-level trade flows used in

the analysis that follows (see Appendix B for a detailed discussion).

4.1 The Magnitude of Transshipment

Figure 2 plots transshipment on the extensive and intensive margins. Prior to the 2018 tariffs,

both margins are low: around 10 percent of HS6 codes show any evidence of rerouting, and

transshipment volume is near zero as a share of baseline trade. Following the tariffs, both margins

rise sharply. By 2023, nearly 40 percent of HS6 codes exhibit positive transshipment under the

liberal screen, and around 35 percent under the conservative screen. On the intensive margin, the

liberal screen identifies transshipment equal to roughly 15 percent of 2017 baseline trade, while

the conservative screen identifies around 5 percent.

Figure 2: Aggregate Transshipment on the Intensive and Extensive Margins

Notes: The left panel plots the share of HS6 codes which exhibit positive transshipment (extensive margin).

The right panel plots the transshipment share of 2017 baseline trade (intensive margin). Conservative (low) and

liberal (high) bounds correspond to the growth-based and levels-based screens, respectively.

17



These magnitudes are economically large and consistent with independent estimates. Iyoha

et al. (2025) document similar patterns in Vietnamese customs records using firm-level data, and

Freund (2024) finds comparable product-level trends. Since transshipment is only one avoidance

channel, these estimates provide a lower bound on total exit. The aggregate patterns mask hetero-

geneity by end-use. Appendix Figure D.2 shows that transshipment is concentrated in capital and

intermediate goods, with far lower magnitudes for consumption goods. This pattern is consistent

with the theoretical prediction that exit responds to the net-of-deduction tariff wedge, which is

larger for business inputs.

4.2 Identification

Figure 2 suggests that the tariffs caused transshipment to increase. But aggregate time series

cannot establish causality: transshipment might have been rising for unrelated reasons, or the

screens might mechanically flag any trade reallocation. This section addresses both concerns.

Event Study Design

I estimate an event study that tests whether products with larger tariff exposure experienced

more transshipment, and whether this relationship emerged only after the tariffs took effect. For

each HS6 code 𝑘 , I define exposure as the product’s tariff wedge in 2019, Δ𝑘,2019—the first year of

full implementation.
10

The specification is:

𝑓 (𝜃𝑘,𝑡 ) = 𝛼𝑘 + 𝛿𝑡×𝑒 (𝑘) +
∑︁
𝑟≠−1

𝛽𝑟 1{rel𝑡 = 𝑟 } × Δ𝑘,2019 + 𝜀𝑘,𝑡 , (6)

where rel𝑡 denotes years relative to 2018, 𝛼𝑘 are HS6 fixed effects, and 𝛿𝑡×𝑒 (𝑘) are year×end-use

fixed effects. The outcome is either the inverse hyperbolic sine of transshipment or an indicator

for any transshipment.
11

Observations are weighted by 2017 import shares with standard errors

are clustered by HS6. Each coefficient 𝛽𝑟 answers: in year 2018+𝑟 , how much more transshipment

occurred in high-exposure products than in low-exposure products, relative to the baseline year

2017?

10. I anchor exposure at 2019 so that coefficients measure the response per unit of the long-run wedge rather than

the time-varying contemporaneous exposure. Results are robust to alternative anchoring years (Figure S1).

11. The inverse hyperbolic sine, sinh
−1 (𝜃 ) = ln(𝜃 +

√
𝜃 2 + 1), approximates the log for large values while accom-

modating zeros.
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Results

Figure 3 plots the coefficients. Two patterns stand out. First, pre-trends are flat. From 2013

through 2017, the coefficients are small and statistically insignificant for all four outcomes. High-

exposure and low-exposure products were not diverging before the tariffs. Block-permutation

tests (Table E.2) confirm this: for three of the four measures, pre-period transshipment does

not differ significantly across exposure levels (Holm-adjusted p-values > 0.2). The conservative

intensive margin shows a small positive gap (p = 0.005), but as Figure 3 shows, this reflects a level

difference, not a trend. Second, the post-2018 response is sharp and persistent. Both margins jump

discretely when the tariffs take effect and remain elevated through 2023. The intensive margin

rises immediately; the extensive margin increases in 2018–2019, stabilizes, and rises again in

later years. This persistence indicates durable supply chain restructuring rather than temporary

adjustment.

Figure 3: Event Study: Transshipment Response to Tariff Exposure

Note: Coefficients 𝛽𝑟 from equation (6). Extensive margin (left) and intensive margin (right), with 90% and 95%

confidence intervals. Conservative bounds in orange; liberal bounds in blue.

A natural concern is that this design is circular. The screens detect trade patterns consistent

with rerouting, so any post-2018 increase might seem mechanical: tariffs shift trade, the screens

flag it, and the event study recovers this by construction. This concern confuses detection with

identification. The screens determine whether a product-hub-year triplet gets flagged. The event
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study asks a different question: among flagged products, did those with larger tariff wedges ex-

perience more transshipment? The coefficient 𝛽𝑟 measures this differential—high-exposure ver-

sus low-exposure products in each year—not the aggregate level shift. Flat pre-trends rule out

confounding on this differential. If high-exposure products were trending toward more trans-

shipment before 2018 for reasons unrelated to tariffs, we would see 𝛽𝑟 > 0 in the pre-period.

We do not. The combination of flat pre-trends and a sharp post-2018 break establishes that tariff

exposure causally determines the magnitude of exit.

Selection in the Trade Data

The model predicts that transshipment should reshape observable trade flows through two chan-

nels: low-passthrough firms exit the direct-shipping sample (extensive margin), and the com-

position of surviving exporters shifts toward higher-cost, higher-passthrough firms (intensive

margin). Table 1 tests both predictions by regressing deviations from pre-2018 trends in direct

China→US trade on measured exit intensity. Columns 1–2 show quantity effects. Products with

higher 𝜃 exhibit significantly larger declines in direct import volumes relative to their pre-2018

trends. The coefficients are close to negative one, indicating that exit substitutes nearly one-for-

one for direct trade: what disappears from the direct channel reappears in the rerouting channel.

Columns 3–4 test whether exit is selective. Proposition 2 predicts that low-cost, high-markup

firms are most likely to exit—these firms have the highest passthrough and thus the strongest

incentive to avoid the tariff. If such firms also charge higher prices (due to quality premia or

market power), their exit should lower average prices among surviving direct shippers. This is

what we find: higher 𝜃 is associated with lower Chinese export prices within HS6-year cells.

Three interpretations are consistent with the price pattern. First, low-cost, high-markup

firms—which Proposition 2 predicts are most likely to exit—may also charge high prices due

to quality premia, so their exit mechanically lowers average unit values. Second, surviving firms

may downgrade quality to preserve market share under tariff pressure. Third, firms may preferen-

tially reroute higher-value varieties to maximize tariff savings. Distinguishing these mechanisms

requires firm-product panel data tracking the same varieties across channels. For this paper’s

purposes, all three support the central claim: selection into exit biases measured passthrough up-

ward, and 𝜃 bounds the magnitude of this bias.
12

Together, these patterns confirm that the firms

exiting differ systematically from those that remain, exactly as the model predicts.

12. If quality downgrading is significant, the welfare cost includes not just reduced trade volumes but also quality

losses borne by consumers—a margin not captured in the sufficient statistics framework.
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Table 1: Exit Intensity and Direct China–US Trade

Δtrend(CN→US)𝑘,𝑡

Quantities Prices

(1) (2) (3) (4)

sinh
−1(𝜃 low) -0.952

∗∗∗
-0.945

∗∗

(0.306) (0.386)

sinh
−1(𝜃high) -0.732

∗∗∗
-0.448

∗∗∗

(0.142) (0.139)

R
2

0.46 0.47 0.34 0.34

Observations 53,485 53,485 53,134 53,134

HS6 & Year×Use FE ✓ ✓ ✓ ✓

Weighted ✓ ✓ ✓ ✓

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Regressions of Δtrend

CN→US
—the deviation of HS6-level direct China→US imports from their 2012–2017 linear

trend—on exit intensity. Columns 1–2: log import values. Columns 3–4: China FOB unit values. All specifications

include HS6 and year×end-use fixed effects; standard errors clustered by HS6.

4.3 From 𝜃 to Passthrough: A Portable Correction

The transshipment shares from Section 4.1 provide a direct correction for the bias in survivor-

based passthrough estimates. Proposition 3 showed that when low-passthrough firms select into

exit, survivor-based estimates overstate the true cohort passthrough:

𝛽cohort ∈
[
(1 − 𝜃high)𝛽survivor, 𝛽survivor

]
.

This bound requires only the exit share 𝜃—a sufficient statistic under monotone selection—and

does not require estimating a structural selection model.

Figure 4 applies this correction to existing survivor-based estimates of tariff passthrough.

Prior work finds that U.S. importers bore the full incidence of the 2018 China tariffs, with passthrough

coefficients indistinguishable from one (Amiti, Redding, and Weinstein 2019, 2020; Cavallo et

al. 2021; Fajgelbaum et al. 2020). Taking 𝛽survivor = 1 as the empirical benchmark and applying

the exit shares from Figure 2, the corrected passthrough is approximately 0.85 in the post-2019
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period.

The correction varies substantially by end-use. For consumption goods, where exit is minimal,

corrected passthrough remains near unity—consistent with the cohort-design findings of Flaaen,

Hortaçsu, and Tintelnot (2020) and Cavallo et al. (2021). For capital and intermediate goods,

where exit is concentrated, corrected passthrough falls to approximately 0.80. The shaded regions

in Figure 4 show the feasible range given the conservative (𝜃 low) and liberal (𝜃high) exit bounds,

with the hatched band marking the conservative floor.

Figure 4: Corrected Passthrough Coefficient by End Use

Note: Shaded regions show corrected domestic passthrough relative to the survivor-based benchmark. The light

blue area indicates the full feasible range implied by the model, 𝛽cohort ∈ [(1 − 𝜃high)𝛽survivor, 𝛽survivor]. The hatched

band marks the conservative floor using the two screens, [(1 − 𝜃high)𝛽survivor, (1 − 𝜃 low)𝛽survivor]. The dashed line

shows the survivor-based benchmark 𝛽survivor = 1.

This convergence between the corrected survivor-based estimates and cohort-design findings

validates both approaches. Cohort designs correctly measure passthrough for direct shippers by

following the same firms before and after the tariff. Survivor-based designs capture the selected

sample of firms that remain in the direct channel. The correction shows that once we account for
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who exits, the two approaches yield consistent estimates of true incidence.

The remaining wedge between 0.80 and 1.0 for business inputs suggests that even after cor-

recting for exit, some burden falls on foreign exporters. Two explanations are possible. First,

exporters may absorb part of the tariff directly. Second, transshipment may understate total exit

because it omits other avoidance margins such as value misreporting and product misclassifica-

tion. Under the second interpretation, 0.80 is an upper bound on true corrected passthrough for

these goods—the actual incidence on U.S. importers may be lower still.

4.4 The Tariff Elasticity of Exit

Correcting measured incidence requires only the level of exit 𝜃 . But evaluating the welfare cost of

tariffs through the marginal cost of public funds also requires characterizing the fiscal externality:

how much the tariff base erodes as rates rise. This section estimates the exit elasticity with respect

to the effective wedge using within-HS6 variation in tariff exposure.

The baseline specification is

𝑓 (𝜃𝑘,𝑡 ) = 𝛼𝑘 + 𝛿𝑡×𝑒 (𝑘) +𝜓 · Δ𝑘,𝑡 + 𝜀𝑘,𝑡 , (7)

whereΔ𝑘,𝑡 ≡ log[(1+𝜏𝑑
𝑘,𝑡
)/(1+𝜏𝑎

𝑘,𝑡
)] is the effective tariff wedge, 𝛼𝑘 are HS6 fixed effects, 𝛿𝑡×𝑒 (𝑘) are

year×end-use fixed effects, and standard errors are clustered by HS6. The outcome 𝑓 (𝜃𝑘,𝑡 ) is either

sinh
−1(𝜃𝑘,𝑡 ) (intensive margin) or 1(𝜃𝑘,𝑡 > 0) (extensive margin). Observations are weighted by

2017 China→US import shares.

The year×end-use fixed effects are motivated by the heterogeneous fixed-cost extension in

Appendix A.5, which shows that the exit elasticity 𝜓 varies with product characteristics that

affect the cost of rerouting. By allowing consumption, capital, and intermediate goods to follow

different aggregate time paths, these fixed effects absorb common shocks within each category

while preserving the identifying variation from differential exposure to the wedge within end-use

groups. Table S12 in the appendix confirms this intuition, showing that products with pre-existing

hub networks, lower bulkiness, or electronics content exhibit larger wedge elasticities along the

intensive margin, although that is not true along the extensive margin (Table S13).

Identification comes from within-product changes in the effective wedge induced by the 2018–

2019 tariff increases. The product fixed effect 𝛼𝑘 absorbs time-invariant product characteristics,

while the year×end-use fixed effect absorbs common shocks within categories. The coefficient

𝜓 identifies the causal elasticity under a parallel-trends assumption: conditional on these fixed

effects, high-wedge and low-wedge products would have followed the same exit trajectory absent

the tariff. The event study in Section 4.2 provides direct evidence for this assumption—pre-2018

coefficients are flat and jointly insignificant, indicating that high- and low-exposure products
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were not differentially trending before the tariffs took effect.

Because the conservative and liberal exit measures provide bounds rather than point esti-

mates, I report joint Imbens and Manski (2004) confidence sets that are guaranteed to contain

the true effect under either specification.
13

Figure 5 shows these bounds scaled to represent the

impact of a 10 percentage point increase in the tariff wedge.

A 10 percentage point increase in the effective tariff wedge raises the probability that a product

exhibits any exit by approximately 10–30 percentage points (extensive margin). On the intensive

margin, it increases the transformed exit share by 0.03 to 0.11 in sinh
−1

units—corresponding

roughly to a 3 to 12 percentage point increase in the exit share for products near the sample

mean.
14

These effects are largest for capital and intermediate goods and smallest for consumption

goods (Appendix Tables S12–S13), consistent with the heterogeneity in exit levels documented

in Section 4.1.

Figure 5: The Tariff Elasticity of Exit

Note: Estimated elasticity of exit with respect to the effective tariff wedge, scaled to show the impact of a 10

percentage point increase. Left panel: effect on the probability of any exit (extensive margin, in percentage

points). Right panel: effect on exit share (intensive margin, in sinh
−1 (𝜃 ) units). Horizontal bars are 95% joint

confidence sets from equation (7), constructed using Imbens and Manski (2004) to account for upper and lower

bound estimates.

13. The bounds take the form

[
𝛽Low − 𝑐★ se(𝛽Low), 𝛽High + 𝑐★ se(𝛽High)

]
, where 𝑐★ is an adjusted critical value that

depends on the estimated correlation 𝜌 ∈ (−1, 1) between the two slopes. The constant 𝑐★ is obtained by integrating

the bivariate normal distribution to achieve joint coverage of 1 − 𝛼 .

14. For small 𝜃 , sinh
−1 (𝜃 ) ≈ 𝜃 , so the coefficient approximates the level effect. For products with higher baseline

exit, the mapping is nonlinear.
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The large elasticities indicate that the tariff base erodes substantially as rates rise. This has

direct implications for the fiscal externality term in the marginal cost of public funds: when exit

is highly elastic, raising tariff rates generates less revenue per unit of welfare cost, increasing the

MCPF. Section 5 combines these elasticity estimates with the level corrections from the previous

subsection to evaluate the overall welfare cost of the 2018 tariffs.

4.5 Robustness and Falsification

The estimated elasticities pass two sharp falsification tests that directly address potential con-

founds.

First, a natural concern is that these elasticities reflect global trade dynamics rather than U.S.-

specific tariff-induced exit. If the observed relationship between the U.S. effective wedge Δ𝑘,𝑡

and measured exit were driven by broader shifts in China’s export patterns—such as capacity

constraints, changing comparative advantage, or global supply chain restructuring—we should

observe similar effects when applying the exit screens to other destinations. Table E.1 tests this

alternative. For both the EU-27+UK and Canada, the coefficients on the U.S. tariff wedge are

small and generally statistically indistinguishable from zero across all four outcomes. A few

coefficients are marginally significant, but they show no consistent pattern and are substantially

smaller than the main estimates for the U.S. This confirms that the wedge-exit relationship is

specific to the U.S. market where the tariffs were imposed, ruling out the concern that the results

reflect coincidental timing between U.S. tariff implementation and unrelated changes in China’s

global export networks.

Second, I directly test whether the network structure underlying exit matters. For each year,

I randomly reassign hub→US shipments across HS6 codes within HS4 product groups, breaking

the directional China→hub→US link while preserving each product’s total China exports and

each hub’s total US-bound shipments. The permutation also preserves the exposure wedge and

all fixed effects. This “broken network” placebo retains any mechanical correlation between trade

volumes and the wedge but eliminates the exit channel. Figure E.1 shows that across 5,000 such

permutations, the resulting coefficients center far below the true estimates, with the observed

elasticities falling in the extreme right tail of the null distribution. This confirms that only the

intact two-leg network structure generates the large responses observed in the data.

Additional robustness checks in the Supplemental Appendix show that the results are insen-

sitive to pre-trend adjustment (Table S7), long-difference specifications (Table S8), HS4-specific

trends (Table S9), entropy balancing (Table S11), and alternative wedge definitions excluding the

deductibility channel (Table S4). Leave-one-out analysis excluding individual hubs one at a time

(Table S14) confirms that no single country drives the results, though plausible transshipment
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hubs like Canada, Japan, and Mexico are the most influential.

5 Re-evaluating the Welfare and Revenue Effects of Tariffs

Given the parameters estimated in the previous section, I now re-evaluate the marginal cost of

public funds for tariffs. The MCPF provides a welfare-relevant metric for comparing tax instru-

ments by measuring the welfare cost to society of raising one additional dollar of government

revenue. A natural benchmark is a hypothetical lump-sum tax, which does not distort economic

behavior. For such a tax, the welfare cost of raising one dollar is exactly one dollar, yielding an

MCPF of one. Real-world taxes like tariffs, by contrast, distort behavior and generate deadweight

losses. The MCPF captures these costs through two channels, represented in the numerator and

denominator of the following expression:
15

MCPF =
𝛽

1 + 𝜂 . (8)

The numerator, 𝛽 , represents the domestic incidence of the tariff—the share of the tariff bur-

den borne by domestic consumers and firms rather than foreign exporters. When 𝛽 = 1, domestic

agents bear the full incidence; when 𝛽 = 0, the tariff is effectively a transfer from foreign pro-

ducers. The denominator, 1 + 𝜂, captures the fiscal externality from behavioral responses. The

elasticity 𝜂 ≤ 0 reflects how the tax base shrinks as economic agents change their behavior to

reduce their tax burden. A larger behavioral response (more negative 𝜂) means the government

collects less revenue per unit of welfare cost, raising the MCPF.

Existing estimates of the tariff MCPF following the 2018 U.S.-China trade war place it between

1.2 and 1.6 (Finkelstein and Hendren 2020; Jaccard 2021), suggesting tariffs are more costly than

lump-sum taxation but comparable to top income taxes. However, these estimates do not fully

account for selection into exit. In the numerator, survivor-based estimates overstate domestic

incidence because low-passthrough firms exit the sample. In the denominator, the fiscal exter-

nality 𝜂 in prior studies aggregates across multiple behavioral margins—substitution to domestic

goods, quality downgrading, and exit—but does not explicitly decompose the exit component or

account for how selection biases its measurement.

The net effect on the MCPF is a priori ambiguous: lower true incidence reduces the numerator,

but a larger exit elasticity (once properly measured) may increase or decrease the denominator

depending on how it compares to the implicit exit response embedded in prior estimates. Which

15. As derived in Appendix A.6. Hendren (2016) and Finkelstein and Hendren (2020) provide a thorough overview

of the marginal value of public funds. Because I focus on taxes rather than transfers, I refer to it as the marginal cost
for clarity.
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effect dominates is an empirical question that this section addresses.

Three caveats qualify the forthcoming welfare analysis. First, the framework is partial equilib-

rium, abstracting from general equilibrium effects on wages, the terms of trade, and sectoral real-

location.
16

Second, the resource costs of exit—additional shipping, relabeling, intermediary fees—

represent genuine deadweight losses not captured in the sufficient statistics approach. Third, be-

cause rerouting is only one exit channel, the 85% passthrough correction likely overstates the

true burden, making the welfare cost estimates conservative upper bounds.

5.1 Correcting Measured Domestic Incidence

The empirical findings allow a direct correction to existing estimates of the tariff’s welfare cost.

As shown in Section 2.4, the true domestic incidence can be approximated by scaling the biased

survivor-based estimate by (1 − 𝜃 ). The literature finds 𝛽survivor ≈ 1.0 for the 2018 tariffs. Ap-

plying the aggregate estimate for the level of exit (𝜃high ≈ 0.15), the corrected scaling factor is

approximately 0.85. This implies a new, lower range for the MCPF of roughly 1.0–1.6, depend-

ing on the magnitude of the fiscal externality in the denominator. This is a notable result: after

correcting for selection bias in the numerator alone, we cannot reject that the welfare cost of the

2018 tariffs approaches that of a distortion-free lump-sum tax.

However, the MCPF also depends on the fiscal externality in the denominator: how rapidly the

tax base erodes when rates rise. In reality, the total fiscal externality aggregates across multiple

margins: substitution to domestic goods (𝜂substitution), quality adjustments (𝜂quality), and exit (𝜂exit),

such that 𝜂total = 𝜂substitution +𝜂quality +𝜂exit. Prior estimates do not decompose these components

or explicitly model the exit elasticity. Section 4.4 implies that the elasticity of exit is high. These

two forces—lower incidence (pushes MCPF down) versus high exit elasticity (pushes MCPF up)—

work in opposite directions. To isolate the welfare cost attributable specifically to exit, I construct

an “exit-only” MCPF in the next subsection.

5.2 The Exit-Based MCPF

To isolate the welfare cost of exit, I construct an MCPF using only the exit component of the fiscal

externality. This exercise asks: holding fixed the other behavioral responses (substitution, quality

adjustment), what is the incremental contribution of exit to the tariff’s welfare cost? I use the

exit level 𝜃 to correct the incidence term and the exit elasticity 𝜓 to construct the exit-specific

16. In particular, I do not model how foreign exporters adjust supply in response to U.S. tariffs, nor do I account

for potential terms-of-trade improvements if the U.S. has market power.
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fiscal externality, 𝜂exit ≈ − 𝜃
1−𝜃𝜓 . The exit-based MCPF is then

MCPFexit ∈
[
(1 − 𝜃 )𝛽survivor

1 − 𝜃
1−𝜃𝜓

,
𝛽survivor

1 − 𝜃
1−𝜃𝜓

]
. (9)

Using the Imbens–Manski bounds on 𝜓 from Section 4.4, I compute a 95% confidence set for

this exit-based MCPF, propagating the uncertainty from the elasticity estimates. Figure 6 plots

the resulting time series. Before the 2018 trade war, with little exit, the MCPF for all goods is

approximately one. After 2018, the story diverges sharply by end-use. For consumption goods,

where exit is minimal (Section 4.1), the MCPF remains near one throughout the post-tariff period.

The corrected incidence is close to unity (Figure 4), and the fiscal externality from exit is negligible,

leaving the welfare cost indistinguishable from a lump-sum tax.

Figure 6: The Marginal Cost of Public Funds by End Use

Note: Shaded regions show the exit-based marginal cost of public funds evaluated in each year given the corre-

sponding regressions. Uncertainty is propagated via the Imbens–Manski bands. The dashed horizontal line marks

MCPF = 1, the benchmark for a lump-sum tax.
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For capital and intermediate goods, however, the picture is starkly different. The high exit

elasticity documented in Section 4.4 generates a substantial fiscal externality. This pushes the up-

per bound of the exit-based MCPF to around 1.5 by 2023. While the lower bound of the estimates

remains near one, the wide confidence interval indicates that we cannot rule out a substantial

welfare cost for these goods, driven entirely by the exit margin. The mechanism is straightfor-

ward: when the tariff base erodes rapidly in response to rate increases (large negative 𝜂exit), each

dollar of revenue requires greater welfare sacrifice. Combined with the lower corrected inci-

dence for business inputs (𝛽 ≈ 0.80 from Figure 4), the net effect leaves the MCPF for capital and

intermediate goods meaningfully above one.

This concentration of the welfare cost in production-related goods is consistent with the find-

ings in Alessandria et al. (2025). In their dynamic general equilibrium model, tariffs are especially

distortionary for investment because capital goods have a high import share and tariffs distort the

intertemporal margin. My paper provides a complementary mechanism: these are precisely the

goods where the fiscal externality from exit is largest. Both papers thus underscore the critical

interaction between trade and fiscal policy.

Alessandria et al. (2025) focus on how tariff revenue is spent—using it to offset distortionary

taxes lowers the net welfare cost. My mechanism highlights how the domestic tax system itself

alters the incentive to pay the tariff in the first place. Through deductibility, the corporate tax code

acts as an implicit enforcement penalty: higher corporate tax rates compress the effective wedge

between direct and rerouted shipments, discouraging exit. This interaction was fundamentally

altered by the 2017 Tax Cuts and Jobs Act (TCJA), which cut the corporate tax rate from 35%

to 21% just before the 2018 tariffs were imposed. The next subsection quantifies the revenue

consequences of this policy change.

5.3 The Tax Cuts and Jobs Act’s Impact on Tariff Revenue

Recall that the tariff wedge on good 𝑘 is

Δ𝑘 = log(1 + 𝜏𝑑
𝑘
) − log

©­­«1 + 𝜏𝑑
𝑘
× 𝜏𝑐 × 𝑧𝑘︸ ︷︷ ︸

Domestic Taxes

ª®®¬ ,
where 𝜏𝑑

𝑘
is the tariff rate on good 𝑘 , 𝜏𝑐 is the business income tax rate, and 𝑧𝑘 is the present value

of depreciation deductions. The theoretical monotonicity results and the empirical work together

show that when either 𝑧𝑘 or 𝜏𝑐 rises, exit declines and tariff revenue rises. Just prior to the 2018

trade war, the 2017 Tax Cuts and Jobs Act increased 𝑧𝑘 for all imported capital goods through

full expensing (100% bonus depreciation), but the corporate tax rate 𝜏𝑐 fell from 35% to 21%. In
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principle, both should affect exit and revenue. I construct two counterfactuals to isolate these

effects:

• In the first counterfactual, I consider what would have happened to exit and revenue had

TCJA not been passed. Under this counterfactual, 𝜏𝑐 remains at 35% and bonus depreciation

follows its statutory path from 40% in 2018 to 30% in 2019, and 0% from 2020 onward.

• Under a second counterfactual, I examine the effect of full bonus depreciation for equip-

ment, but maintaining 𝜏𝑐 = 0.35.

In each scenario, I compute the change in estimated exit and the resulting increase in tariff rev-

enue given the larger tax base, comparing to the observed exit and revenue given TCJA’s pas-

sage. Figure 7 plots the predicted change in the aggregate exit share (top panel) and cumulative

tariff revenue (bottom panel) over 2018–2023 under the two counterfactual tax regimes, with

Imbens–Manski bounds reflecting uncertainty in the intensive margin elasticity.

Figure 7: Counterfactual Impact of the TCJA on Exit and Tariff Revenue

Note: This figure plots the estimated change in the aggregate exit share (Δ𝜃 ) and cumulative tariff revenue

(Δ𝑅) over 2018–2023 under two counterfactual scenarios relative to the observed outcome under the TCJA. “No-

TCJA” assumes the corporate tax rate remained at 35% and bonus depreciation followed its pre-TCJA phase-out

schedule. “Bonus-only” assumes a 35% corporate tax rate but with 100% bonus depreciation. The points represent

the central estimates, and the vertical bars show 95% joint confidence sets constructed using the method of Imbens

and Manski (2004).

Without the reform (“No-TCJA”), the aggregate exit share would have been lower, implying

that firms would have shifted 0.3–1.6 percentage points less of imported value through rerouting

channels. Cumulatively, tariff revenue would have been $2–$9 billion higher, reflecting both a

higher effective tariff base and reduced exit. The second scenario layers in full expensing (𝑧𝑘 = 1)
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while holding 𝜏𝑐 fixed at 35%. This marginally raises revenue and lowers exit compared to the

first scenario. The effect is small because the reform only affects imported equipment, which had

a high expensing rate relative to the statutory baseline.

This demonstrates a meaningful and quantitatively significant interaction between the corpo-

rate tax base and tariff revenue. Domestic tax policy serves as a powerful, if unintentional, trade

enforcement tool. The magnitude—$2 to $9 billion in foregone revenue—is economically sub-

stantial and suggests that policymakers evaluating trade enforcement strategies should account

for spillovers from the domestic tax system. While the public finance literature emphasizes ex-

plicit enforcement tools like audits and penalties, the deductibility of imported inputs provides an

implicit enforcement margin that operates automatically through the tax code. Spillovers from

domestic tax policy may lessen the need for explicit penalties on rerouting and other forms of

exit.

6 Conclusion

This paper shows that tariff avoidance generates economically significant selection bias in mea-

sured incidence. When avoidance is costly, low-passthrough firms exit the direct-shipping chan-

nel, leaving only high-passthrough survivors in customs data. Measuring this exit in bilateral

trade flows, I find 30–40 percent of tariffed products exhibit evidence of rerouting by 2023, im-

plying true aggregate passthrough of approximately 85 percent. The bias is concentrated in in-

termediate and capital goods where avoidance is highest; consumer goods, where transshipment

is minimal, show near-complete passthrough consistent with prior estimates.

The corporate tax code is an implicit enforcement mechanism. Because firms deduct tariff-

inclusive import costs, higher corporate tax rates compress the wedge between compliant and

non-compliant channels, discouraging avoidance. The 2017 tax cut from 35 to 21 percent widened

this wedge, increasing transshipment and costing the U.S. an estimated $2–9 billion in tariff rev-

enue. This spillover operates automatically, without audits or penalties, and has gone unrecog-

nized in both the tax and trade literatures.

Transshipment is one margin among many, and my estimates are conservative lower bounds.

The welfare analysis abstracts from general equilibrium effects, and to the extent enforcement on

one margin displaces avoidance to others, single-channel policies will prove ineffective. But the

selection framework generalizes: wherever agents can exit observed transactions to avoid taxes,

measured behavioral parameters will be biased. The sufficient statistic approach developed here

provides a methodology for bounding that bias without requiring identification of who avoids or

why.
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Flaaen, Aaron, Ali Hortaçsu, and Felix Tintelnot. 2020. “The Production Relocation and Price Effects of US Trade

Policy: The Case of Washing Machines.” American Economic Review 110, no. 7 (July): 2103–2127. issn: 0002-

8282. https://doi.org/10.1257/aer.20190611.

Freund, Caroline. 2024.TheChinaWash: Tracking Products To Identify Tariff EvasionThrough Transshipment.Technical

report.

Gopinath, Gita, and Oleg Itskhoki. 2010. “Frequency of Price Adjustment and Pass-Through.” Quarterly Journal of
Economics 125, no. 2 (May): 675–727. issn: 0033-5533. https://doi.org/10.1162/qjec.2010.125.2.675.

Hendren, Nathaniel. 2016. “The Policy Elasticity.” Tax Policy and the Economy 30, no. 1 (January): 51–89. issn: 0892-

8649. https://doi.org/10.1086/685593.

Imbens, Guido W., and Charles F. Manski. 2004. “Confidence Intervals for Partially Identified Parameters.” Economet-
rica 72, no. 6 (November): 1845–1857. issn: 0012-9682. https://doi.org/10.1111/j.1468-0262.2004.00555.x.

Iyoha, Ebehi, Edmund Malesky, Jaya Wen, and Sung-Ju Wu. 2025. Exports in Disguise? Trade Rerouting during the
US-China Trade War. Technical report.

Jaccard, Torsten. 2021. “Who Pays for Protectionism? The Welfare and Substitution Effects of Tariffs.” SSRN Electronic
Journal, issn: 1556-5068. https://doi.org/10.2139/ssrn.3967700.

Javorcik, Beata S., and Gaia Narciso. 2008. “Differentiated products and evasion of import tariffs.” Journal of Interna-
tional Economics 76, no. 2 (December): 208–222. issn: 00221996. https://doi.org/10.1016/j.jinteco.2008.07.002.

Kimball, Miles S. 1995. “The Quantitative Analytics of the Basic Neomonetarist Model.” Journal of Money, Credit and
Banking 27, no. 4 (November): 1241. issn: 00222879. https://doi.org/10.2307/2078048.

Kopczuk, Wojciech, Justin Marion, Erich Muehlegger, and Joel Slemrod. 2016. “Does Tax-Collection Invariance Hold?

Evasion and the Pass-Through of State Diesel Taxes.”American Economic Journal: Economic Policy 8, no. 2 (May):

251–286. issn: 1945-7731. https://doi.org/10.1257/pol.20140271.

Melitz, Marc J, and Gianmarco I. P. Ottaviano. 2008. “Market Size, Trade, and Productivity.” Review of Economic Studies
75, no. 1 (January): 295–316. issn: 0034-6527. https://doi.org/10.1111/j.1467-937X.2007.00463.x.

Mishra, Prachi, Arvind Subramanian, and Petia Topalova. 2008. “Tariffs, enforcement, and customs evasion: Evidence

from India.” Journal of Public Economics 92, nos. 10-11 (October): 1907–1925. issn: 00472727. https://doi.org/10.

1016/j.jpubeco.2008.04.017.

Rodrı́guez-Clare, Andrés, Mauricio Ulate, and Jose Vasquez. 2025. The 2025 Trade War: Dynamic Impacts Across U.S.
States and the Global Economy. Technical report. Cambridge, MA: National Bureau of Economic Research, May.

https://doi.org/10.3386/w33792.

Slemrod, Joel. 2019. “Tax Compliance and Enforcement.” Journal of Economic Literature 57, no. 4 (December): 904–

954. issn: 0022-0515. https://doi.org/10.1257/jel.20181437.

Slemrod, Joel, and Shlomo Yitzhaki. 2002. “Tax Avoidance, Evasion, and Administration,” 1423–1470. https://doi.org/

10.1016/S1573-4420(02)80026-X.

Teti, Feodora. 2025. “Missing Tariffs.” https://doi.org/10.2139/ssrn.5097020.

33

https://doi.org/10.1162/rest.90.3.587
https://doi.org/10.1162/rest.90.3.587
https://doi.org/10.1086/381476
https://doi.org/10.1257/aer.20190611
https://doi.org/10.1162/qjec.2010.125.2.675
https://doi.org/10.1086/685593
https://doi.org/10.1111/j.1468-0262.2004.00555.x
https://doi.org/10.2139/ssrn.3967700
https://doi.org/10.1016/j.jinteco.2008.07.002
https://doi.org/10.2307/2078048
https://doi.org/10.1257/pol.20140271
https://doi.org/10.1111/j.1467-937X.2007.00463.x
https://doi.org/10.1016/j.jpubeco.2008.04.017
https://doi.org/10.1016/j.jpubeco.2008.04.017
https://doi.org/10.3386/w33792
https://doi.org/10.1257/jel.20181437
https://doi.org/10.1016/S1573-4420(02)80026-X
https://doi.org/10.1016/S1573-4420(02)80026-X
https://doi.org/10.2139/ssrn.5097020


A Theoretical Appendix

A.1 Assumptions about Demand

I impose several regularity conditions on demand:

Assumption 1 (Demand). The demand for each variety 𝑖 depends on its own delivered price 𝑝𝑖 and
on a price aggregator P summarizing rivals. Fixing P as parametric at the variety level, the primitives
satisfy:

D1. Downward sloping own demand and outward shifts in rivals:
𝜕𝐷𝑖

𝜕𝑝𝑖
< 0 and

𝜕𝐷𝑖

𝜕P
> 0.

D2. Smoothness: 𝐷𝑖 (· | P) ∈ 𝐶2 in own price.

D3. Elastic demand: 𝜀𝑖 (𝑝𝑖 | P) ≡ −
𝑝𝑖

𝐷𝑖

𝜕𝐷𝑖

𝜕𝑝𝑖
> 1.

D4. Profit concavity / local stability: For either channel 𝑐 ∈ {𝐷,𝑇 } with delivered price 𝑝 𝑐
𝑖 ,

𝜀 (𝑝 𝑐
𝑖 | P) − 1 − 𝜅 (𝑝 𝑐

𝑖 | P) > 0.

D5. Kimball curvature: 𝜅𝑖 (𝑝𝑖 | P) ≡ −
𝜕 ln 𝜀𝑖 (𝑝𝑖 | P)

𝜕 ln 𝑝𝑖
≤ 0 (equals 0 under CES). We also impose

two extra conditions:

(a)
𝜕𝜅 (𝑝𝑖 | P)
𝜕 ln 𝑝𝑖

≤ 0.

(b) 𝜅′(𝑝) ≡ 𝜕𝜅 (𝑝)/𝜕 ln𝑝 ≥ − 𝜀 (𝑝)
𝜀 (𝑝)−1

𝜅 (𝑝)2.

ConditionsD1–D4 are standard and ensure well-behaved monopolistic competition with elas-

tic demand and unique profit-maximizing prices. Condition D5 introduces Kimball-type demand,

where 𝜅 ≤ 0 means the demand elasticity 𝜀 is weakly increasing in price. Intuitively, consumers

become more price-sensitive as prices rise, making high-priced (high-markup) goods face flat-

ter residual demand curves. This is the source of heterogeneous passthrough: when a tax raises

delivered prices, high-markup firms face larger elasticity increases and therefore compress their

markups more, leading to lower passthrough. The technical conditions D5(a)–(b) ensure that

this passthrough is monotone in marginal cost, which is critical for the sorting result in Propo-

sition 2. Without these curvature restrictions, passthrough could be non-monotone, and the se-

lection mechanism would be more complex. Empirically, D5 is a weak condition: the literature

consistently finds that markups vary across firms (Gopinath and Itskhoki 2010; Amiti, Itskhoki,

and Konings 2019; De Loecker, Eeckhout, and Unger 2020; Edmond, Midrigan, and Xu 2023), and

Kimball demand is a tractable way to microfound this heterogeneity.
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A.2 Lerner Condition

Lemma 1 (Lerner condition and monotone comparative statics). For either channel 𝑟 ∈ {𝑑, 𝑎} and
corresponding wedges 𝜏𝑟 , under D1–D4, any 𝑝∗𝑖 (𝑚𝑖 ; 𝑟 ) is interior and satisfies

𝑝∗𝑖 −𝑚𝑖

𝑝∗
𝑖

=
1

𝜀𝑖 (𝑝𝑟𝑖 | P)
, 𝑝𝑟𝑖 = (1 + 𝜏𝑟 )𝑝∗𝑖 .

Moreover: (i) 𝑝∗𝑖 strictly increases in𝑚𝑖 ; (ii) 𝑝∗𝑖 is weakly decreasing in the wedge 𝜏𝑟 (constant under
CES); and (iii) 𝑞∗𝑖 strictly decreases in𝑚𝑖 and 𝜏𝑟 .

Proof. Interior and FOC. ByD2–D4, Φ𝑖 (·) is strictly concave in 𝑝𝑖 ; the unique maximizer is interior

and characterized by the FOC. Let the delivered price be

𝑝𝑖 ≡ 𝑝𝑖 (𝑝𝑖, 𝜏𝑟 ) =

(1 + 𝜏𝑎)𝑝𝑖 (exit channel)

(1 + 𝜏𝑑) 𝑝𝑖 (direct channel).

Then 𝜕𝑝𝑖/𝜕𝑝𝑖 ∈ {1 + 𝜏𝑎, 1 + 𝜏𝑑}, and the FOC is

0 =
𝜕Φ𝑖

𝜕𝑝𝑖
= 𝐷𝑖 (𝑝𝑖) + (𝑝𝑖 −𝑚𝑖) 𝐷′𝑖 (𝑝𝑖)

𝜕𝑝𝑖

𝜕𝑝𝑖
.

With 𝜀𝑖 (𝑝𝑖) ≡ −𝑝𝑖𝐷′𝑖 (𝑝𝑖)/𝐷𝑖 (𝑝𝑖),

𝑝∗𝑖 −𝑚𝑖

𝑝∗
𝑖

=
𝑝𝑖

(𝜕𝑝𝑖/𝜕𝑝𝑖) 𝑝∗𝑖
· −𝐷𝑖 (𝑝𝑖)
𝑝𝑖𝐷

′
𝑖
(𝑝𝑖)

=
1

𝜀𝑖 (𝑝𝑖)
.

This is the Lerner condition.

Monotonicity in𝑚𝑖 . Define

𝑔(𝑝,𝑚;𝜏𝑟 ) ≡ 𝐷 (𝑝) + (𝑝 −𝑚) 𝐷′(𝑝) 𝜕𝑝
𝜕𝑝

, 𝑝 = 𝑝 (𝑝, 𝜏𝑟 ).

At the optimum, 𝑔(𝑝∗,𝑚;𝜏𝑟 ) = 0. Partials:

𝜕𝑔

𝜕𝑚
= −𝐷′(𝑝) 𝜕𝑝

𝜕𝑝
> 0 (D1), 𝜕𝑔

𝜕𝑝
= 2𝐷′(𝑝) 𝜕𝑝

𝜕𝑝
+ (𝑝 −𝑚) 𝐷′′(𝑝)

( 𝜕𝑝
𝜕𝑝

)
2

.

Strict concavity of profits (D4) implies 𝜕𝑔/𝜕𝑝 < 0 at 𝑝∗. By the implicit function theorem,

𝜕𝑝∗/𝜕𝑚 = −(𝜕𝑔/𝜕𝑚)/(𝜕𝑔/𝜕𝑝) > 0.
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Monotonicity in 𝜏𝑟 . For the direct channel, 𝑝 = (1 + 𝜏𝑟 )𝑝 . Write

𝐺 (𝑝, 𝜏𝑟 ) ≡ 𝑝 −𝑚
𝑝
− 1

𝜀 ((1 + 𝜏𝑟 )𝑝) = 0.

Then

𝜕𝐺

𝜕𝜏𝑟
=

𝜀′((1 + 𝜏𝑟 )𝑝)
𝜀 ((1 + 𝜏𝑟 )𝑝)2 𝑝 ≥ 0,

𝜕𝐺

𝜕𝑝
=
𝑚

𝑝2
+ 𝜀′((1 + 𝜏𝑟 )𝑝)
𝜀 ((1 + 𝜏𝑟 )𝑝)2 (1 + 𝜏

𝑟 ).

Under Kimball demand, 𝜀′(·) ≥ 0, so 𝜕𝐺/𝜕𝜏𝑟 ≥ 0. Profit concavity (D4, equivalently 𝜀 − 1 − 𝜅 > 0

at the optimum) implies 𝜕𝐺/𝜕𝑝 > 0. Hence, by the IFT,

𝜕𝑝∗

𝜕𝜏𝑟
= −𝜕𝐺/𝜕𝜏

𝑟

𝜕𝐺/𝜕𝑝 ≤ 0,

with equality under CES (𝜀′ ≡ 0).

Quantities. In either channel 𝑝 = (1 + 𝜏𝑟 )𝑝∗ and

𝑑
(
(1 + 𝜏𝑟 )𝑝∗

)
𝑑𝜏𝑟

= 𝑝∗ + (1 + 𝜏𝑟 )𝑑𝑝
∗

𝑑𝜏𝑟
= 𝑝∗

(
1 + 𝜅 (𝑝)

𝜀 (𝑝) − 1 − 𝜅 (𝑝)

)
= 𝑝∗

𝜀 (𝑝) − 1

𝜀 (𝑝) − 1 − 𝜅 (𝑝) > 0,

since 𝜀 (𝑝) > 1 and the denominator is positive by D4. With 𝐷′(·) < 0, 𝑞∗𝑖 = 𝐷 (𝑝) strictly falls

in 𝜏𝑟 ; similarly, 𝑞∗𝑖 strictly falls in 𝑚 because 𝑝∗ rises in 𝑚 and demand slopes down. This proves

(i)–(iii). □

Lemma 1 establishes two key results. First, it confirms the standard Lerner condition: firms set

their markup inversely to the elasticity of demand they face. This makes all comparative statics

run through how a given wedge, 𝜏𝑟 , shifts the delivered price and how elasticity varies with that

price. Second, the lemma establishes the monotone comparative statics that are essential for the

paper’s sorting mechanism.

Part (i) shows that a higher marginal cost pushes a firm’s optimal pre-wedge price upward,

providing the clean ordering in𝑚 necessary to derive a unique sorting cutoff. Part (ii) highlights

that any wedge acts as a demand shifter. Finally, Part (iii) records the quantity implications: a

higher marginal cost or a higher wedge 𝜏𝑟 reduces the quantity sold. This decline in profitabil-

ity within a channel is what ultimately drives selection when wedges differ, a mechanism we

formalize next.

A.3 Proof of Proposition 2

Proof. ByD2–D4, the maximizer in𝑉 (𝑚, 1+𝜏𝑟 ) is interior and unique; envelope arguments apply.

The primitive (𝑝−𝑚)𝐷 ((1+𝜏𝑟 )𝑝) has increasing differences in (𝑚, 1+𝜏𝑟 ) because 𝜕2 [(𝑝−𝑚)𝐷 ((1+
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𝜏𝑟 )𝑝)]/𝜕𝑚 𝜕(1 + 𝜏𝑟 ) = −𝑝𝐷′((1 + 𝜏𝑟 )𝑝) > 0 by D1. Hence 𝑉 inherits increasing differences in

(𝑚, 1 + 𝜏𝑟 ) by Topkis. Fix (𝜏𝑑 , 𝜏𝑎). Then

𝜕𝐻

𝜕𝑚
=𝑉𝑚 (𝑚, 1 + 𝜏𝑎) −𝑉𝑚 (𝑚, 1 + 𝜏𝑑) < 0

since 1 + 𝜏𝑎 < 1 + 𝜏𝑑 and 𝑉 has increasing differences; continuity of 𝑉 yields a unique threshold

𝑚̂ solving 𝐻 (𝑚̂;𝜏𝑑 , 𝜏𝑎) = 0. For the comparative statics, differentiate the indifference condition:

𝑑𝑚̂

𝑑𝜏𝑑
= −𝜕𝐻/𝜕𝜏

𝑑

𝜕𝐻/𝜕𝑚 ,
𝑑𝑚̂

𝑑𝜏𝑎
= −𝜕𝐻/𝜕𝜏

𝑎

𝜕𝐻/𝜕𝑚 .

By the envelope theorem at the direct and exit optima 𝑝∗
𝑑

and 𝑝∗𝑎 ,

𝜕𝑉 (𝑚, 1 + 𝜏𝑟 )
𝜕(1 + 𝜏𝑟 ) = (𝑝∗ −𝑚) 𝑝∗𝐷′

(
(1 + 𝜏𝑟 )𝑝∗

)
≤ 0,

so 𝜕𝑉 (𝑚, 1 + 𝜏𝑑)/𝜕𝜏𝑑 ≤ 0 and 𝜕𝑉 (𝑚, 1 + 𝜏𝑎)/𝜕𝜏𝑎 ≤ 0. Hence

𝜕𝐻

𝜕𝜏𝑑
= − 𝜕𝑉 (𝑚, 1 + 𝜏𝑑)

𝜕𝜏𝑑
≥ 0,

𝜕𝐻

𝜕𝜏𝑎
=

𝜕𝑉 (𝑚, 1 + 𝜏𝑎)
𝜕𝜏𝑎

≤ 0.

Since 𝜕𝐻/𝜕𝑚 < 0 at an interior cutoff, the stated signs follow. □

Figure A.1: An increase in taxes raises the cutoff

𝑔(𝑚)

𝑚(𝜏𝑑
0
, 𝜏𝑎) 𝑚(𝜏𝑑

1
, 𝜏𝑎)

marginal cost𝑚

Exiters

Survivors at 𝜏𝑑
0

Survivors at 𝜏𝑑
1

Note: Distribution of marginal costs and wedge-induced selection. The cutoff 𝑚(𝜏𝑑 , 𝜏𝑎) partitions the cohort:

firms with 𝑚 < 𝑚 exit, while 𝑚 ≥ 𝑚 stay. A wider wedge gap (e.g., a higher 𝜏𝑑 or a lower 𝜏𝑎) shifts the cutoff

right, increasing the exit share 𝜃 and shrinking the survivor set.
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A.4 Proof of Proposition 1

Proof. Write the first-order condition for a firm in the direct channel as 𝐺 (𝑝, 𝜏𝑑) ≡ (𝑝 −𝑚)/𝑝 −
1/𝜀 ((1 + 𝜏𝑑)𝑝) = 0. Totally differentiate and use

𝜕𝐺

𝜕𝜏𝑑
=

𝜀′((1 + 𝜏𝑑)𝑝)
𝜀 ((1 + 𝜏𝑑)𝑝)2

𝑝,
𝜕𝐺

𝜕𝑝
=
𝑚

𝑝2
+ 𝜀′((1 + 𝜏𝑑)𝑝)
𝜀 ((1 + 𝜏𝑑)𝑝)2

(1 + 𝜏𝑑).

Using 𝜅 (𝑢) = −𝑢 𝜀′(𝑢)/𝜀 (𝑢) and the Lerner condition𝑚 = 𝑝∗(𝜀 − 1)/𝜀,

𝑑𝑝∗

𝑑𝜏𝑑
= −𝜕𝐺/𝜕𝜏

𝑑

𝜕𝐺/𝜕𝑝 =
𝜅 (𝑝𝑑)
1 + 𝜏𝑑

· 𝑝∗

𝜀 (𝑝𝑑) − 1 − 𝜅 (𝑝𝑑)
.

Finally, the passthrough elasticity is

𝛽𝑖 =
𝑑 ln

(
(1 + 𝜏𝑑)𝑝∗

)
𝑑𝜏𝑑

=
1

1 + 𝜏𝑑
+ 1

𝑝∗
𝑑𝑝∗

𝑑𝜏𝑑
=

1

1 + 𝜏𝑑
· 𝜀 (𝑝𝑑) − 1

𝜀 (𝑝𝑑) − 1 − 𝜅 (𝑝𝑑)
.

Under Assumption D4, strict profit concavity at the optimum is equivalent to 𝜀−1−𝜅 > 0, which

ensures the denominator is positive. Moreover, under Assumption D5(b), 𝜕𝛽/𝜕 ln 𝑝 ≥ 0. Since

Lemma 1 implies 𝑝 increases in𝑚, it follows that 𝜕𝛽/𝜕𝑚 ≥ 0. □

A.5 Heterogeneous Fixed Costs of Exit

This appendix extends the baseline model by allowing the fixed cost of exit to vary across firms or

products. We show that the selection logic and the survivor–cohort bias results of Propositions 1–

3 remain valid under heterogeneity, and we clarify how cross-category differences in fixed costs

rationalize the patterns in Section 4.

Corollary 2 (Heterogeneous fixed costs of exit). Let Assumptions D1–D5 hold. For each unit 𝑖 ,
let the fixed cost of exit 𝐹𝑖 be drawn from a continuous distribution𝐺 with support [𝐹min, 𝐹max] and
density 𝑔 > 0, independent of the unit’s marginal cost𝑚𝑖 . For 𝑟 ∈ {𝑑, 𝑎}, write

𝑉 (𝑚, 𝐹 ; 1 + 𝜏𝑟 ) ≡ max

𝑝≥𝑚
(𝑝 −𝑚) 𝐷

(
(1 + 𝜏𝑟 )𝑝

�� 𝑃 )
− 1{𝑟 = 𝑎} 𝐹,

and define the exit advantage

𝐻 (𝑚, 𝐹 ;𝜏𝑑 , 𝜏𝑎) ≡ 𝑉 (𝑚, 𝐹 ; 1 + 𝜏𝑎) −𝑉 (𝑚, 𝐹 ; 1 + 𝜏𝑑).

Then:
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(i) Cutoff and comparative statics. For every 𝐹 ∈ [𝐹min, 𝐹max] there exists a unique cutoff
𝑚𝑏 (𝐹 ;𝜏𝑑 , 𝜏𝑎) solving 𝐻 (𝑚𝑏 (𝐹 ;𝜏𝑑 , 𝜏𝑎), 𝐹 ;𝜏𝑑 , 𝜏𝑎) = 0 such that

𝑚 < 𝑚𝑏 (𝐹 ;𝜏𝑑 , 𝜏𝑎) ⇒ Exit, 𝑚 ≥𝑚𝑏 (𝐹 ;𝜏𝑑 , 𝜏𝑎) ⇒ Stay.

Moreover,
𝜕𝑚𝑏

𝜕𝜏𝑑
> 0,

𝜕𝑚𝑏

𝜕𝜏𝑎
< 0,

𝜕𝑚𝑏

𝜕𝐹
< 0.

(ii) Monotone selection and survivor bias. Let 𝑆𝑖 = 1{𝑚𝑖 ≥ 𝑚𝑏 (𝐹𝑖 ;𝜏𝑑 , 𝜏𝑎)} denote survival
in the direct (survivor) sample. Under Kimball curvature (D5), direct-channel passthrough is
increasing in marginal cost: 𝛽𝑖 = 𝛽 (𝑚𝑖) with 𝛽′(𝑚) ≥ 0. Because 𝑆𝑖 is weakly increasing in
𝑚𝑖 for any realization of 𝐹𝑖 , it follows that

Cov(𝛽𝑖, 𝑆𝑖) ≥ 0,

so that the survivor estimate exceeds the cohort average:

𝛽survivor = E
[
𝛽𝑖 | 𝑆𝑖 = 1

]
≥ E[𝛽𝑖] = 𝛽cohort.

(iii) Incidence bound unchanged. With 𝜃 ≡ Pr

(
𝑚 < 𝑚𝑏 (𝐹 ;𝜏𝑑 , 𝜏𝑎)

)
denoting the exit share, the

cohort passthrough remains bounded by

𝛽cohort ∈
[
(1 − 𝜃 ) 𝛽survivor, 𝛽survivor

]
.

(iv) Cross-category heterogeneity. If 𝐹 is deterministic by end-use category 𝑘 , all conclusions
hold within 𝑘 :

𝛽survivor,𝑘 ≥ 𝛽cohort,𝑘 , 𝛽cohort,𝑘 ∈
[
(1 − 𝜃𝑘) 𝛽survivor,𝑘 , 𝛽survivor,𝑘

]
,

where 𝜃𝑘 ≡ Pr

(
𝑚 < 𝑚𝑏 (𝐹𝑘 ;𝜏𝑑 , 𝜏𝑎)

)
. Lower 𝐹𝑘 raises 𝑚𝑏 and thus increases 𝜃𝑘 , providing a

structural rationale for larger exit among capital/intermediate goods even when their statutory
wedge Δ𝑘 is smaller (e.g., because of deductibility).

Proof. Proposition 2 implies that 𝐻 (𝑚, 𝐹 ;𝜏𝑑 , 𝜏𝑎) is continuous and strictly decreasing in 𝑚,

with 𝜕𝐻/𝜕𝜏𝑑 > 0 and 𝜕𝐻/𝜕𝜏𝑎 < 0. For any 𝐹 , define 𝑚𝑏 (𝐹 ;𝜏𝑑 , 𝜏𝑎) by the indifference condition

𝐻 (𝑚𝑏, 𝐹 ;𝜏𝑑 , 𝜏𝑎) = 0. Uniqueness and the signs of the partial derivatives follow from the Implicit

Function Theorem:

𝜕𝑚𝑏

𝜕𝜏𝑑
= −𝜕𝐻/𝜕𝜏

𝑑

𝜕𝐻/𝜕𝑚 > 0,
𝜕𝑚𝑏

𝜕𝜏𝑎
= −𝜕𝐻/𝜕𝜏

𝑎

𝜕𝐻/𝜕𝑚 < 0,
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𝜕𝑚𝑏

𝜕𝐹
=

1

𝜕𝐻/𝜕𝑚 < 0, since

𝜕𝐻

𝜕𝐹
= −1 and

𝜕𝐻

𝜕𝑚
< 0.

Monotonicity of 𝑆𝑖 = 1{𝑚𝑖 ≥ 𝑚𝑏 (𝐹𝑖 ; ·)} in 𝑚𝑖 and of 𝛽 (𝑚) in 𝑚 (Proposition 1) under Kim-

ball demand implies Cov(𝛽𝑖, 𝑆𝑖) ≥ 0 by Chebyshev’s association inequality; the survivor–cohort

ordering and identity of Proposition 3 then deliver 𝛽survivor ≥ 𝛽cohort. The bound 𝛽cohort ∈
[(1 − 𝜃 )𝛽survivor, 𝛽survivor] follows from the law of total expectation and does not depend on

whether 𝐹 is degenerate. Category-specific statements are immediate by conditioning on 𝑘 . □

Remarks. Independence of 𝐹 and 𝑚 is sufficient, not necessary. The results continue to hold

whenever the survival probability is weakly increasing in𝑚 after integrating over 𝐹 , e.g., if 𝐹 | 𝑚
shifts in first-order stochastic dominance toward larger 𝐹 as 𝑚 increases (a positive association

that makes survival more likely at higher 𝑚 since 𝜕𝑚𝑏/𝜕𝐹 < 0). A sufficiently strong negative

association could, in principle, overturn monotone selection.

The heterogeneity in fixed costs can be interpreted as endogenous in reduced form. For ex-

ample, let 𝐹𝑖 = 𝐹0(𝑚𝑖) − 𝜙 𝜃 with 𝜙 ≥ 0, where 𝜃 is the aggregate exit share (network effects or

thicker intermediation reduce setup costs). The cutoff solves

𝐻 (𝑚𝑏, 𝐹 ;𝜏𝑑 , 𝜏𝑎) = 0 where 𝐹 = 𝐹0(𝑚𝑏) − 𝜙 𝜃,

and the aggregate share is the fixed point

𝜃 = 𝑇 (𝜃 ) ≡ Pr

(
𝑚 < 𝑚𝑏 (𝐹0(𝑚) − 𝜙𝜃 ;𝜏𝑑 , 𝜏𝑎)

)
.

Since 𝜕𝑚𝑏/𝜕𝐹 < 0, we have 𝜕𝑚𝑏/𝜕𝜃 = −𝜙 𝜕𝑚𝑏/𝜕𝐹 > 0, so 𝑇 is monotone; a fixed point exists by

Tarski’s theorem. Uniqueness holds under a mild slope/contraction condition (e.g., sup𝜃 |𝑇 ′(𝜃 ) | <
1, which obtains for sufficiently small𝜙 or under standard log-concavity/MLR shape restrictions).

Under these conditions, the comparative statics 𝜕𝑚𝑏/𝜕𝜏𝑑 > 0 and 𝜕𝑚𝑏/𝜕𝜏𝑎 < 0 carry through, and

the survivor–cohort ordering 𝛽survivor ≥ 𝛽cohort is unchanged. Moreover, 𝜙 > 0 steepens 𝑇 and

makes 𝜃 (𝜏𝑑) more concave (stronger diffusion/plateau), reinforcing the dynamics in Section 4.

A.6 MCPF Derivation

Suppose a planner has access to a vector of linear tax instruments 𝝉 (with individual elements 𝜏𝑖 ).

Each tax instrument has a corresponding base 𝐵𝑖 (·). For simplicity, assume no spillovers across

instruments, so 𝐵𝑖 depends only on its own instrument. The government chooses instruments to
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maximize a well-behaved welfare function𝑊 (𝝉 ) subject to a revenue constraint:

max

𝝉
𝑊 (𝝉 ) subject to 𝐺 = 𝑅(𝝉 ) ≡

𝑁∑︁
𝑖=1

𝜏𝑖 𝐵𝑖 (𝜏𝑖). (SPP)

Denote 𝜆 as the shadow value of public funds:

𝜆 ≡ − 𝜕𝑊 /𝜕𝜏𝑖
𝜕𝑅/𝜕𝜏𝑖

⇐⇒ 𝜕𝑊 /𝜕𝜏𝑖
𝜕𝑅/𝜕𝜏𝑖

=
𝜕𝑊 /𝜕𝜏 𝑗
𝜕𝑅/𝜕𝜏 𝑗

∀ 𝑖, 𝑗 .

With no spillovers,

𝜕𝑅

𝜕𝜏𝑖
= 𝐵𝑖 (𝜏𝑖) + 𝜏𝑖

𝜕𝐵𝑖

𝜕𝜏𝑖
= 𝐵𝑖 (𝜏𝑖)

(
1 + 𝜏𝑖

(𝜕𝐵𝑖/𝜕𝜏𝑖)
𝐵𝑖 (𝜏𝑖)

)
︸                ︷︷                ︸

1+𝜂𝑖

, 𝜂𝑖 ≡
𝜕 ln𝐵𝑖

𝜕 ln𝜏𝑖
.

Under quasi-linear preferences and in partial equilibrium, the marginal welfare cost of increasing

each instrument equals the domestic willingness to pay to avoid it, i.e.

− 𝜕𝑊

𝜕𝜏𝑖
= 𝛽𝑖 𝐵𝑖 (𝜏𝑖),

where 𝛽𝑖 is the (cohort) domestic incidence per unit increase in instrument 𝑖 . Hence

MCPF𝜏𝑖 =
− (𝜕𝑊 /𝜕𝜏𝑖)

𝜕𝑅/𝜕𝜏𝑖
=

𝛽𝑖 𝐵𝑖 (𝜏𝑖)
𝐵𝑖 (𝜏𝑖) (1 + 𝜂𝑖)

=
𝛽𝑖

1 + 𝜂𝑖
.

Specialization to the wedge. In our application the policy instrument is the effective wedge

Δ ≡ ln
1+𝜏𝑑
1+𝜏𝑎 . Identifying 𝑖 = Δ and using 𝛽Δ = 𝛽cohort = (1 − 𝜃 )𝛽border and 𝜂Δ = 𝜂other − 𝜃

1−𝜃𝜓 , the

expression above delivers the MCPF used in the main text.

B From Firm-Level Selection to Product-Level Observables

The model developed in Section 2 is stated in general terms, but the empirical application focuses

on tariffs. This appendix bridges the firm-level theory and product-level trade data by showing

how individual selection decisions manifest in observable HS6-level statistics. Throughout, I spe-

cialize to the tariff context: exit takes the form of rerouting through third countries, the direct

channel corresponds to recorded China-to-US shipments, and the exit channel corresponds to

shipments routed through transshipment hubs.

Consider an HS6 product code 𝑘 as defining a market populated by a measure-one contin-

41



uum of monopolistically competitive foreign exporters, each drawing marginal cost𝑚𝑖 from the

distribution 𝐹𝑚 (·) with density 𝑓𝑚 (·). Before the tariff increase, all firms ship directly. After the

tariff increase, the routing cutoff 𝑚(𝜏𝑑 , 𝜏𝑎) from Proposition 2 partitions this continuum: firms

with 𝑚𝑖 < 𝑚 reroute through hubs, while firms with 𝑚𝑖 ≥ 𝑚 continue direct shipping. The

product-level rerouting share 𝜃𝑘 is simply the mass of firms below the cutoff:

𝜃𝑘 = Pr(𝑚𝑖 < 𝑚) = 𝐹𝑚 (𝑚(𝜏𝑑𝑘 , 𝜏
𝑎
𝑘
)). (A.1)

This aggregation has three immediate implications for product-level observables. First, direct

trade volumes fall not only because of standard substitution effects but also because the extensive

margin of firms exits the direct channel. For product 𝑘 , observed direct imports are

Imports
direct

𝑘
=

∫ 𝑚

𝑚

𝑞∗𝑖 (𝑚𝑖 ;𝜏
𝑑
𝑘
) 𝑑𝐹𝑚 (𝑚𝑖), (A.2)

which mechanically declines as𝑚 rises. This is the quantity effect documented in Table 1, Columns

(1)–(2): products with higher 𝜃𝑘 exhibit larger declines in direct trade flows relative to pre-tariff

trends.

Second, and more subtly, the composition of surviving direct exporters shifts toward higher-

cost, higher-passthrough firms. Since price is increasing in marginal cost (Lemma 1), the average

unit value of direct shipments is

𝑝
direct

𝑘 =

∫ 𝑚

𝑚
𝑝∗𝑖 (𝑚𝑖 ;𝜏

𝑑
𝑘
) · 𝑞∗𝑖 (𝑚𝑖 ;𝜏

𝑑
𝑘
) 𝑑𝐹𝑚 (𝑚𝑖)∫ 𝑚

𝑚
𝑞∗
𝑖
(𝑚𝑖 ;𝜏

𝑑
𝑘
) 𝑑𝐹𝑚 (𝑚𝑖)

. (A.3)

As the cutoff 𝑚 rises with tariff exposure, low-cost firms with low prices reroute, mechanically

raising the weighted-average unit value. However, under Kimball demand (D5), passthrough is

also increasing in marginal cost (Proposition 1), so the rerouters are precisely the low-passthrough,

high-markup firms. This creates a composition effect that works in the opposite direction: the re-

maining direct shippers are higher-cost but also better able to pass through cost increases.

The net effect on observed unit values depends on which force dominates. Proposition 2

implies that rerouters are low-𝑚𝑖 firms, which under standard pricing (𝑝𝑖 increasing in 𝑚𝑖 ) have

lower prices. Their exit should raise average unit values. However, Table 1, Columns (3)–(4)

documents the opposite: products with higher 𝜃𝑘 exhibit lower observed unit values for direct

shipments. This negative price-rerouting correlation is consistent with the theoretical prediction

that compositional shifts toward higher-cost survivors are overwhelmed by other adjustments.

One interpretation is that the rerouters were high-quality varieties (which may have low marginal

cost but high prices due to quality premia), so their departure lowers average unit values even as
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average marginal costs rise. Alternatively, remaining firms may engage in quality downgrading

to preserve market share, a margin not modeled here. Distinguishing between these mechanisms

is an important avenue for future work, but the key point for this paper is that both the quantity

decline and the price pattern are consistent with selection driving compositional change in the

direct-shipping sample.
17

Third, the product-level passthrough regression in Equation 3 averages over the selected sur-

vivor distribution. Discretizing for exposition, suppose product 𝑘 consists of 𝑁𝑘 firms in the

pre-tariff period. Post-tariff, (1 − 𝜃𝑘)𝑁𝑘 firms ship directly, each with passthrough 𝛽𝑖 (𝑚𝑖). The

survivor-based regression estimates

𝛽𝑘,survivor =
1

(1 − 𝜃𝑘)𝑁𝑘

∑︁
𝑖∈Survivors

𝛽𝑖 (𝑚𝑖) = E[𝛽𝑖 | 𝑚𝑖 ≥𝑚], (A.4)

which is the survivor-weighted average passthrough. Under Kimball demand, 𝛽𝑖 is increasing in

𝑚𝑖 (Proposition 1), so E[𝛽𝑖 | 𝑚𝑖 ≥𝑚] > E[𝛽𝑖], confirming that the survivor estimate exceeds the

true cohort passthrough. The product-level correction in Proposition 3 therefore applies: the bias

equals Cov(𝛽𝑖, 𝑆𝑖)/Pr(𝑆𝑖 = 1), where now 𝑆𝑖 = 1{𝑚𝑖 ≥𝑚} is the firm-level survival indicator.

In summary, the product-level rerouting share 𝜃𝑘 aggregates firm-level routing decisions, and

observable trade statistics—quantities, unit values, and passthrough estimates—reflect the com-

position of firms that select into each channel. The empirical strategy in Section 3 exploits this

link by measuring 𝜃𝑘 at the HS6 level and using within-product variation in tariff exposure to

identify the rerouting elasticity𝜓 .

C Screening Implementation Details

This appendix provides complete documentation of the methodology used to construct the exit

share 𝜃 . The goal is to identify tariff-induced rerouting of Chinese goods through third countries

to the United States.

C.1 Data and Notation

I use annual bilateral trade flows from CEPII’s BACI HS-12 vintage (2012–2023) at the HS6 product

level. For each year 𝑡 , country pair (𝑖, 𝑗), and HS6 code𝑘 , I observe the customs value of shipments

𝑣𝑖→ 𝑗,𝑘,𝑡 .

For each HS6 product 𝑘 and hub 𝑖 in year 𝑡 , define the two potential legs of rerouting:

17. An additional consideration is that rerouters may re-label higher-value goods to evade detection, which would

also contribute to the negative correlation between 𝜃𝑘 and observed unit values in the direct channel.
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• First leg (China→ hub): ℓ𝑘,𝑖,𝑡 ≡ 𝑣CHN→𝑖,𝑘,𝑡

• Second leg (hub→ United States): 𝑥𝑘,𝑖,𝑡 ≡ 𝑣𝑖→USA,𝑘,𝑡

Define market shares as follows. Let 𝑠US

𝑘,𝑖,𝑡
denote country 𝑖’s share of U.S. imports in product

𝑘 :

𝑠US

𝑘,𝑖,𝑡
=

𝑣𝑖→USA,𝑘,𝑡∑
𝑗 𝑣 𝑗→USA,𝑘,𝑡

.

Let 𝑠ROW

𝑘,𝑖,𝑡
denote country 𝑖’s share of exports to the rest of the world (excluding the U.S.):

𝑠ROW

𝑘,𝑖,𝑡
=

∑
𝑗≠USA

𝑣𝑖→ 𝑗,𝑘,𝑡∑
𝑗≠USA

∑
𝑚 𝑣𝑚→ 𝑗,𝑘,𝑡

.

C.2 Hub Countries

I restrict potential hubs to 36 countries with geographic proximity to China, port infrastructure,

and established trade relationships with both China and the U.S. (Table C.1). This excludes im-

plausible routes and reduces false positives from noise in global trade data.

Table C.1: Potential Transshipment Hubs (ISO-3 codes)

ARE BHR CAN CHL DEU DOM

EGY HKG IDN IND ISR JOR

JPN KAZ KHM LAO LKA MAC

MAR MEX MYS NLD NPL OMN

PAK PAN PHL POL RUS SAU

SGP THA TUR VNM ZAF TWN

Note: In BACI, Taiwan is recorded as “Other Asia” with country code S19.

C.3 Trend Estimation

I estimate product- and partner-specific trends in the pre-tariff period (2012–2017) with time

centered at 2014.5.

Share trends (logit). For China and hub shares in U.S. imports and in ROW exports:

logit(𝑠𝑘,𝑖,𝑡 ) = 𝛼𝑘,𝑖 + 𝛽𝑘,𝑖 (𝑡 − 2014.5) + 𝜀𝑘,𝑖,𝑡 , 𝑠̂𝑘,𝑖,𝑡 = invlogit(𝛼𝑘,𝑖 + 𝛽𝑘,𝑖 (𝑡 − 2014.5)).

If estimation is unreliable (fewer than 3 non-zero observations), I use the pre-period mean 𝑠𝑘,𝑖,pre.
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Level trends (log-linear). For trade levels 𝑣 ∈ {ℓ𝑘,𝑖,𝑡 , 𝑥𝑘,𝑖,𝑡 }:

log(max(𝑣, 1)) = 𝑎𝑘,𝑖 + 𝑔𝑘,𝑖 (𝑡 − 2014.5) + 𝜈𝑘,𝑖,𝑡 , 𝑣̂𝑘,𝑖,𝑡 = exp(𝑎𝑘,𝑖 + 𝑔𝑘,𝑖 (𝑡 − 2014.5)).

If estimation is unreliable, I use the pre-period mean 𝑣𝑘,𝑖,pre.

Surprise growth. Define above-trend growth, floored at zero:

ℓ̃𝑘,𝑖,𝑡 = max{ℓ𝑘,𝑖,𝑡 − ℓ̂𝑘,𝑖,𝑡 , 0} and 𝑥𝑘,𝑖,𝑡 = max{𝑥𝑘,𝑖,𝑡 − 𝑥𝑘,𝑖,𝑡 , 0}.

C.4 Screening Criteria

To be flagged as rerouting, a product-hub-year triplet (𝑘, 𝑖, 𝑡) must simultaneously satisfy five

conditions.

Screen 1: Tariff Exposure. Product𝑘 must have been exposed to U.S. tariff increases on China:

𝜏𝑑
𝑘,2019

> 𝜏𝑑
𝑘,2017

,

where 𝜏𝑑
𝑘,𝑡

is the U.S. ad valorem tariff on Chinese product 𝑘 in year 𝑡 .

Screen 2: U.S. Reallocation. China’s share of U.S. imports must fall below its pre-trend while

the hub’s share rises above its pre-trend:

𝑠US

𝑘,CHN,𝑡
< 𝑠̂US

𝑘,CHN,𝑡
and 𝑠US

𝑘,𝑖,𝑡
> 𝑠̂US

𝑘,𝑖,𝑡
.

Screen 3: Rest-of-World Specificity. China’s ROW export share must remain stable or rise

relative to the hub’s. Specifically, China’s above-trend gain must weakly exceed the hub’s above-

trend gain: (
𝑠ROW

𝑘,CHN,𝑡
− 𝑠̂ROW

𝑘,CHN,𝑡

)
≥ 𝛾

(
𝑠ROW

𝑘,𝑖,𝑡
− 𝑠̂ROW

𝑘,𝑖,𝑡

)
,

where 𝛾 = 1. This rules out cases where China is losing global competitiveness in product 𝑘 .

Screen 4: Tariff Feasibility. The hub country’s tariff on product 𝑘 must be lower than the U.S.

tariff on China:

𝜏hub

𝑘,𝑖,𝑡
< 𝜏𝑑

𝑘,𝑡
.

Hub tariffs are MFN rates from Teti (2025). This ensures there is an economic incentive to reroute

through hub 𝑖 .
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Screen 5: Quantitative Consistency. The China-to-hub flow must be large enough to plausi-

bly supply the hub-to-U.S. flow. I impose two versions:

(a) Conservative (growth-based): Uses above-trend growth on both legs. The condition is:

ℓ̃𝑘,𝑖,𝑡 ≥ 𝜌∗max(𝑥𝑘,𝑖,𝑡 , 𝑥hinge,Δ).

The flagged quantity is the bottleneck: min(ℓ̃𝑘,𝑖,𝑡 , 𝑥𝑘,𝑖,𝑡 ).

(b) Liberal (levels-based): Uses trade levels directly. The conditions are:

min(ℓ𝑘,𝑖,𝑡 , 𝑥𝑘,𝑖,𝑡 ) ≥ 𝑥hinge,levels and ℓ𝑘,𝑖,𝑡 ≥ 𝜙∗𝑥𝑘,𝑖,𝑡 .

The flagged quantity is the bottleneck: min(ℓ𝑘,𝑖,𝑡 , 𝑥𝑘,𝑖,𝑡 ).

C.5 Parameter Calibration

Table C.2 lists fixed parameters and calibrated thresholds.

Table C.2: Screening Parameters

Parameter Value Description

𝛾 1.0 ROW specificity multiplier (Screen 3).

𝑥hinge,Δ 0 Hinge for 𝑥 in growth rule (thousands of current

USD).

𝑥hinge,levels 2000 Minimum size for min(ℓ, 𝑥) in levels rule (thousands

of current USD).

𝜌∗ 0 Growth-rule proportionality threshold (Screen 5a).

𝜙∗ 0.325 Levels-rule proportionality threshold (Screen 5b).

The calibrated values 𝜌∗ and 𝜙∗ are selected via placebo discipline. I search over a grid and

choose the smallest values such that the implied exit share for never-treated products (those with

𝜏𝑑
𝑘,2019

= 𝜏𝑑
𝑘,2017

) does not exceed 1% in any pre-tariff year (2012–2017). This yields 𝜌∗ = 0 (any

positive above-trend growth on both legs qualifies) and 𝜙∗ = 0.325 (the China-to-hub leg must

be at least 32.5% of the hub-to-U.S. leg).
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C.6 Aggregation and Capping

For each product 𝑘 and year 𝑡 , I aggregate flagged values across all hubs passing Screens 1–5:

𝜃 raw

𝑘,𝑡
=

∑︁
𝑖∈H

1[Screens 1–5 pass for (𝑘, 𝑖, 𝑡)] × 𝑞𝑘,𝑖,𝑡 ,

where 𝑞𝑘,𝑖,𝑡 is the flagged quantity from Screen 5 (either min(ℓ̃𝑘,𝑖,𝑡 , 𝑥𝑘,𝑖,𝑡 ) for the conservative ver-

sion or min(ℓ𝑘,𝑖,𝑡 , 𝑥𝑘,𝑖,𝑡 ) for the liberal version).

I then deflate to 2017 dollars and cap at the 2017 baseline:

𝜃𝑘,𝑡 = min

(
𝜃 raw

𝑘,𝑡
/𝑃𝑡

𝑣CHN→USA,𝑘,2017

, 1

)
,

where 𝑃𝑡 is the BLS end-use import price index for all commodities, normalized so 𝑃2017 = 1.

C.7 Persistence Filter

To reduce noise from temporary fluctuations, I zero out single-year spikes. Flagged exit must

persist for at least two consecutive years:

𝜃𝑘,𝑡 ← 𝜃𝑘,𝑡 × 1
[
𝜃 raw

𝑘,𝑡−1
> 0 or 𝜃 raw

𝑘,𝑡+1
> 0

]
.

C.8 Tariff Data Sources

U.S. tariffs on China (𝜏𝑑 ) are from Amiti, Redding, and Weinstein (2020) for monthly HS10 rates

through 2017, aggregated to annual HS6 using 2017 import shares as weights. From 2018–2023, I

use the Global Tariff Database from Teti (2025) and Rodrı́guez-Clare, Ulate, and Vasquez (2025),

which provides bilateral HS6 tariffs. Hub country tariffs (𝜏hub
) are MFN rates from the same

source.

D Empirical Results
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D.1 Results

Table D.1: Summary Statistics

Pre Post N

Variable Mean SD Mean SD Post–Pre 𝐻𝑆6Pre 𝐻𝑆6Post 𝐻𝑆6∩

Δ𝑘,𝑡 0.025 0.066 0.121 0.062 0.096 4246 4246 4246

𝜃 low 0.014 0.092 0.045 0.148 0.031 4246 4246 4246

𝜃high 0.037 0.160 0.079 0.212 0.042 4246 4246 4246

Share(𝜃 low > 0) 0.097 0.296 0.295 0.456 0.197 4246 4246 4246

Share(𝜃high > 0) 0.110 0.313 0.263 0.440 0.153 4246 4246 4246

Consumption share (2017) 0.203 0.384 0.203 0.385 0.000 4246 4246 4246

Capital share (2017) 0.151 0.346 0.149 0.348 -0.002 4246 4246 4246

Intermediate share (2017) 0.646 0.462 0.648 0.463 0.003 4246 4246 4246

Notes: Variable construction is described in the main text.
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Figure D.1: Interquartile Range of the Tariff Wedge by End Use

Note: Each panel displays the interquartile range of effective tariff rates for imported goods categorized by end use.

The orange line plots the uncorrected effective tariff rate 1 + 𝜏𝑑 , while the blue line plots the tariff rate corrected

for import deductibility: (1 + 𝜏𝑑 )/(1 + 𝜏𝑎). Since intermediates are fully tax-deductible, 𝜏𝑎
𝑘,𝑡

= 𝜏𝑐𝑡 × 𝜏𝑑𝑘,𝑡 . Prior to

the 2017 Tax Cuts and Jobs Act, 𝜏𝑐𝑡 = 0.35; after TCJA 𝜏𝑐𝑡 = 0.21. Capital goods are expensed over time. Denoting

the present-value of such deductions as 𝑧𝑡 , the effective tariff wedge for capital goods is 𝜏𝑎
𝑘,𝑡

= 𝑧𝑘,𝑡𝜏
𝑐
𝑘,𝑡
× 𝜏𝑑

𝑘,𝑡
. After

TCJA, 𝑧 = 1. Prior to TCJA, 𝑧 was slightly less than one for most imported capital goods. I obtain 𝑧 by mapping the

imported capital good HS6 codes into the corresponding IRS tax lives and calculating the present value of deductions

with a discount rate of 0.06.
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Figure D.2: Transshipment by End Use Category

Note: The top panels plot the share of HS6 codes within each end use category which have detected transshipment.

The bottom panels display a weighted average transshipment share by end use. Each HS6 code is weighted by its

share of 2017 imports from China.
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E Robustness

Table E.1: EU-27+UK and Canada Destination Placebo Results

EU-27+UK

sinh
−1(𝜃 low) sinh

−1(𝜃high) 1(𝜃 low > 0) 1(𝜃high > 0)

(1) (2) (3) (4) (5) (6) (7) (8)

Δ𝑘,𝑡 0.018
∗

0.021 0.030 0.034 0.110 0.134 0.047 0.106

(0.010) (0.014) (0.020) (0.026) (0.158) (0.121) (0.158) (0.104)

Δ𝑘,𝑡 × 1(𝑡 ≥ 2018) -0.003 -0.004 -0.027 -0.067

(0.006) (0.011) (0.131) (0.141)

Observations 54,564 54,564 54,564 54,564 54,564 54,564 54,564 54,564

R
2

0.29 0.29 0.32 0.32 0.33 0.33 0.37 0.37

Canada (1) (2) (3) (4) (5) (6) (7) (8)

Δ𝑘,𝑡 0.059
∗∗∗

0.053
∗

0.058
∗∗

0.012 0.242 0.095 0.162 0.057

(0.018) (0.027) (0.024) (0.040) (0.186) (0.215) (0.187) (0.202)

Δ𝑘,𝑡 × 1(𝑡 ≥ 2018) 0.006 0.053 0.170 0.121

(0.017) (0.035) (0.323) (0.318)

Observations 52,716 52,716 52,716 52,716 52,716 52,716 52,716 52,716

R
2

0.19 0.19 0.23 0.23 0.29 0.29 0.31 0.31

HS6 & Year×Use FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Weighted ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Entries report two–way fixed–effects regressions of placebo diversion measures on the U.S. tariff wedge,

where the wedge is the same as in the main specification and is constructed from statutory U.S. HS6 tariffs and

the tax–shield (see text). Outcomes are diversion measures computed with (i) the EU–27+UK treated as a single

destination (left block) and (ii) Canada as the destination (right block). For each destination and year, diversion is

built from HS6 flows using the same screening steps as in the main analysis but with the destination replaced by

EU–27+UK or Canada. For comparability with the U.S. baseline, the exposure gate uses the U.S. HS6 tariff panel

and diversion is capped within HS6 by the 2017 China→U.S. base so that

∑
𝑖 𝜃𝑘,𝑡 ≤ 1. Columns (1)–(2) and (5)–(6)

use inverse–hyperbolic–sine outcomes sinh
−1 (𝜃 low) and sinh

−1 (𝜃high); columns (3)–(4) and (7)–(8) use indicators

1{𝜃 low > 0} and 1{𝜃high > 0}. All specifications include HS6 and year×use fixed effects with standard errors clustered

by HS6. The bottom panel repeats the exercise for Canada.
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Figure E.1: Permutation Null Distributions of 𝛽 under a Broken China–Hub–US Network

Mapping

Note: This figure displays the permutation-based placebo distributions for the estimated elasticity of diversion

with respect to the tax wedge, 𝛽 , under a broken network mapping. For each replication, the pairing between

China→hub and hub→US shipment legs is randomly deranged within HS4–year product groups while keeping the

marginal leg volumes, pre-trend screens, and denominator structure fixed. Each permutation thus preserves the

observed scale and composition of trade at the HS4 level but eliminates the structural correspondence between the

two legs of the network. The distributions shown in blue correspond to the resulting estimates of 𝛽 from 5,000

such random permutations, re-estimated separately for intensive and extensive outcomes. The vertical red lines

indicate the coefficients obtained under the intact network mapping. The top panels use the inverse-hyperbolic-

sine transformations of the diversion measures sinh
−1 (𝜃 low) and sinh

−1 (𝜃high), while the bottom panels use binary

indicators for positive diversion 1{𝜃 low > 0} and 1{𝜃high > 0}. All specifications include HS6 and year fixed effects

and are weighted by 2017 China–US import shares.
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Table E.2: Permutation Tests for Pre-Period Balance

Outcome Observed Gap P (left) P (right) P (two-sided) P (Holm)

sinh
−1(𝜃high) 0.006 0.960 0.040 0.079 0.238

sinh
−1(𝜃 low) 0.001 0.999 0.001 0.001 0.005

1{𝜃high > 0} -0.007 0.096 0.904 0.193 0.386

1{𝜃 low > 0} 0.001 0.132 0.868 0.263 0.386

Notes: Each row reports the observed weighted mean difference (treated minus placebo) in the specified outcome

during the pre-period (2012–2017), along with permutation-based p-values. For each outcome, 5,000 block permu-

tations were performed by reassigning treated HS6 codes within HS4 product groups while preserving the overall

number of treated observations. For each permutation draw, the treated–placebo gap in the weighted mean outcome

(weighted by 2017 China–US import shares) was recalculated. The empirical p-values are computed as the fraction

of permuted gaps that are as or more extreme than the observed gap, with Holm–Bonferroni adjustments applied for

multiple outcomes. All outcomes are defined at the HS6–year level and correspond to the conservative and liberal

diversion measures in the main text, expressed as either inverse hyperbolic sine or binary indicators.

Supplemental Appendix
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Table S1: Transshipment Response to Tariffs

Intensive Margin Extensive Margin

sinh
−1(𝜃 low) sinh

−1(𝜃high) 1(𝜃 low > 0) 1(𝜃high > 0)

(1) (2) (3) (4) (5) (6) (7) (8)

Δ𝑘,𝑡 0.276
∗∗∗

0.867
∗∗∗

2.13
∗∗∗

2.08
∗∗∗

(0.045) (0.135) (0.533) (0.528)

Δ𝑘,𝑡 × Cap 0.264
∗∗∗

0.897
∗∗∗

2.05
∗∗∗

1.99
∗∗∗

(0.064) (0.211) (0.671) (0.632)

Δ𝑘,𝑡 × Con 0.158
∗∗∗

0.389
∗∗∗

1.36
∗

1.23

(0.045) (0.132) (0.815) (0.833)

Δ𝑘,𝑡 × Int 0.502
∗∗∗

1.60
∗∗∗

3.60
∗∗∗

3.71
∗∗∗

(0.085) (0.182) (0.405) (0.474)

R
2

0.40 0.41 0.49 0.50 0.52 0.52 0.52 0.52

Observations 54,912 54,912 54,912 54,912 54,912 54,912 54,912 54,912

HS6 & Year×Use FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Weighted ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: This table reports the coefficients for regressions of (7). Each HS6–year observation is fractionally allocated

across end-uses according to its UN-BEC shares. We estimate on the stacked HS6–year–end-use panel with HS6 and

year × end-use fixed effects; weights are pre-period end-use share multiplied by the HS6 code’s share of imports

from China to the United States, and standard errors are clustered by HS6.
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Table S2: Transshipment Response to Tariffs (Clustered by HS4 × year)

Intensive Margin Extensive Margin

sinh
−1(𝜃 low) sinh

−1(𝜃high) 1(𝜃 low > 0) 1(𝜃high > 0)

(1) (2) (3) (4) (5) (6) (7) (8)

Δ𝑘,𝑡 0.276
∗∗∗

0.867
∗∗∗

2.13
∗∗∗

2.08
∗∗∗

(0.065) (0.144) (0.576) (0.589)

Δ𝑘,𝑡 × Cap 0.264
∗∗∗

0.897
∗∗∗

2.05
∗∗

1.99
∗∗

(0.077) (0.223) (0.702) (0.676)

Δ𝑘,𝑡 × Con 0.158
∗∗∗

0.389
∗∗

1.36 1.23

(0.048) (0.135) (0.766) (0.815)

Δ𝑘,𝑡 × Int 0.502
∗∗∗

1.60
∗∗∗

3.60
∗∗∗

3.71
∗∗∗

(0.125) (0.183) (0.502) (0.532)

R
2

0.40 0.41 0.49 0.50 0.52 0.52 0.52 0.52

Observations 54,912 54,912 54,912 54,912 54,912 54,912 54,912 54,912

HS6 & Year×Use FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Weighted ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: This table reports the coefficients for regressions of (7). Each HS6–year observation is fractionally allocated

across end-uses according to its UN-BEC shares. We estimate on the stacked HS6–year–end-use panel with HS6 and

year × end-use fixed effects; weights are pre-period end-use share multiplied by the HS6 code’s share of imports

from China to the United States, and standard errors are clustered by HS4 and year.
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Table S3: Transshipment Response to Tariffs (unweighted)

Intensive Margin Extensive Margin

sinh
−1(𝜃 low) sinh

−1(𝜃high) 1(𝜃 low > 0) 1(𝜃high > 0)

(1) (2) (3) (4) (5) (6) (7) (8)

Δ𝑘,𝑡 0.131
∗∗∗

0.202
∗∗∗

0.612
∗∗∗

0.529
∗∗∗

(0.019) (0.030) (0.071) (0.067)

Δ𝑘,𝑡 × Cap 0.125
∗∗∗

0.145
∗

0.404
∗∗∗

0.295
∗∗

(0.038) (0.078) (0.126) (0.120)

Δ𝑘,𝑡 × Con 0.044
∗

0.092
∗∗∗

0.408
∗∗∗

0.347
∗∗∗

(0.025) (0.028) (0.097) (0.092)

Δ𝑘,𝑡 × Int 0.186
∗∗∗

0.295
∗∗∗

0.828
∗∗∗

0.742
∗∗∗

(0.031) (0.048) (0.119) (0.112)

R
2

0.23 0.23 0.27 0.27 0.31 0.31 0.32 0.32

Observations 54,912 54,912 54,912 54,912 54,912 54,912 54,912 54,912

HS6 & Year×Use FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Weighted ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: This table reports the coefficients for regressions of (7). Each HS6–year observation is fractionally allocated

across end-uses according to its UN-BEC shares. We estimate on the stacked HS6–year–end-use panel with HS6 and

year × end-use fixed effects; weights are pre-period end-use share (since we are stacking by end-use, this is the same

as unweighted), and standard errors are clustered by HS6.
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Table S4: Transshipment Response to Tariffs (No Deductibility)

sinh
−1(𝜃 low) sinh

−1(𝜃high)

(1) (2) (3) (4)

1 + 𝜏𝑑
𝑘,𝑡

0.128
∗∗∗

0.430
∗∗∗

(0.039) (0.121)

1 + 𝜏𝑑
𝑘,𝑡
× Cap 0.113

∗∗
0.394

∗∗

(0.054) (0.175)

1 + 𝜏𝑑
𝑘,𝑡
× Con 0.094

∗∗∗
0.226

∗∗∗

(0.029) (0.081)

1 + 𝜏𝑑
𝑘,𝑡
× Int 0.257

∗∗∗
0.981

∗∗∗

(0.048) (0.137)

R
2

0.39 0.40 0.48 0.49

Observations 54,912 54,912 54,912 54,912

HS6 & Year×Use FE ✓ ✓ ✓ ✓

Weighted ✓ ✓ ✓ ✓

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: This table repeats the intensive margin exercise from Table S1, but uses the tariff wedge gross of the de-

ductibility penalty as a regressor. Each HS6–year observation is fractionally allocated across end-uses according to

its UN-BEC shares. We estimate on the stacked HS6–year–end-use panel with HS6 and year × end-use fixed effects;

weights are pre-period end-use share multiplied by the HS6 code’s share of imports from China to the United States,

and standard errors are clustered by HS6.
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Table S5: Transshipment Response to Tariffs (with HS4×Year clustering and HS6, year, and

HS2×Year Fixed Effects)

Intensive Margin Extensive Margin

sinh
−1(𝜃 low) sinh

−1(𝜃high) 1(𝜃 low > 0) 1(𝜃high > 0)

(1) (2) (3) (4) (5) (6) (7) (8)

Δ𝑘,𝑡 0.383
∗∗∗

1.26
∗∗∗

2.48
∗∗∗

2.42
∗∗∗

(0.087) (0.166) (0.673) (0.689)

Δ𝑘,𝑡 × Cap 0.327
∗∗∗

1.09
∗∗∗

2.57
∗∗

2.52
∗∗

(0.079) (0.196) (0.890) (0.913)

Δ𝑘,𝑡 × Con 0.266
∗∗∗

0.742
∗∗∗

1.80
∗∗

1.78
∗∗

(0.069) (0.177) (0.631) (0.663)

Δ𝑘,𝑡 × Int 0.458
∗∗∗

1.53
∗∗∗

2.56
∗∗∗

2.46
∗∗∗

(0.107) (0.199) (0.577) (0.596)

R
2

0.42 0.43 0.52 0.53 0.58 0.58 0.58 0.58

Observations 54,912 54,912 54,912 54,912 54,912 54,912 54,912 54,912

HS6 & Year & Year×HS2 FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Weighted ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: This table reports the coefficients for regressions of (7). Each HS6–year observation is fractionally allocated

across end-uses according to its UN-BEC shares. We estimate on the stacked HS6–year–end-use panel with HS6,

year, and year × HS2 fixed effects; weights are pre-period end-use share (since we are stacking by end-use, this is

the same as unweighted), and standard errors are clustered by HS4 and year.
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Table S6: Pre-Period Test

Intensive Margin Extensive Margin

sinh
−1(𝜃 low) sinh

−1(𝜃high) 1(𝜃 low > 0) 1(𝜃high > 0)

(1) (2) (3) (4)

Δ𝑘,𝑡 0.281
∗∗∗

0.882
∗∗∗

2.07
∗∗∗

1.98
∗∗∗

(0.040) (0.124) (0.576) (0.580)

Δ𝑘,𝑡 ×1(𝑡 < 2018) -0.052 -0.142 0.556 0.864

(0.070) (0.205) (0.957) (0.943)

R
2

0.40 0.49 0.52 0.52

Observations 54,912 54,912 54,912 54,912

HS6 & Year×Use FE ✓ ✓ ✓ ✓

Weighted ✓ ✓ ✓ ✓

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Each column repeats the main regression specification for both intensive and extensive margins, but controls

for the pre-period with an indicator variable for pre-tariff years. Each HS6–year observation is fractionally allocated

across end-uses according to its UN-BEC shares. We estimate on the stacked HS6–year–end-use panel with HS6 and

year × end-use fixed effects; weights are pre-period end-use share multiplied by the HS6 code’s share of imports

from China to the United States, and standard errors are clustered by HS6.
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Table S7: Slope-adjusted difference-in-differences

sinh
−1( ˜𝜃 low) sinh

−1( ˜𝜃high) 1( ˜𝜃 low > 0) 1( ˜𝜃high > 0)

(1) (2) (3) (4)

Δ𝑘,𝑡 0.264
∗∗∗

0.766
∗∗∗

2.08
∗∗∗

2.09
∗∗∗

(0.047) (0.177) (0.692) (0.703)

R
2

0.40 0.47 0.52 0.51

Observations 54,912 54,912 54,912 54,912

Weighted ✓ ✓ ✓ ✓

HS6 & Year×Use FE ✓ ✓ ✓ ✓

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Each outcome is first residualized by its HS6-specific linear trend estimated over 2012–2017, removing

product-level pre-slopes before estimation. We then re-estimate the baseline specification with HS6 and year×end-

use fixed effects, weighted by 2017 China→US import shares multiplied by pre-period end-use share and clustered

by HS6. Coefficients therefore capture the effect of the tariff wedge on deviations from each product’s pre-trend.

Table S8: Long-differenced Specification

sinh
−1(𝜃Low) sinh

−1(𝜃High) 1(𝜃 low > 0) 1(𝜃high > 0) 1(𝜃Act

low
> 0) 1(𝜃Act

high
> 0)

(1) (2) (3) (4) (5) (6)

Δ𝑘,Post − Δ𝑘,Pre 0.224
∗∗∗

0.684
∗∗∗

1.48
∗∗∗

1.50
∗∗∗

1.53
∗∗

1.48
∗∗

(0.050) (0.135) (0.474) (0.474) (0.607) (0.591)

Observations 4,246 4,246 4,246 4,246 2,640 2,513

R
2

0.18 0.24 0.12 0.11 0.16 0.15

Weighted ✓ ✓ ✓ ✓ ✓ ✓

Use FE ✓ ✓ ✓ ✓ ✓ ✓

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: For each HS6 we compute pre (2012–2017) and post (2018–2023) means of the outcome and the effective

wedge, form long differences, and regress the long-differenced outcomes on the long-differenced wedge with end-

use fixed effects. All regressions are weighted by 2017 import shares and standard errors are clustered by HS6.

Columns (5)-(6) estimate an “entry” of the extensive margin in which we restrict the sample to HS6 codes with zero

evidence of pre-period transshipment.
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Table S9: Baseline Specification with HS4 Trends

sinh
−1(𝜃 low) sinh

−1(𝜃high) 1(𝜃 low > 0) 1(𝜃high > 0)

(1) (2) (3) (4)

Δ𝑘,𝑡 0.183
∗∗∗

0.813
∗∗∗

2.85
∗∗∗

2.76
∗∗∗

(0.030) (0.132) (0.819) (0.862)

R
2

0.54 0.61 0.59 0.59

Observations 54,912 54,912 54,912 54,912

HS6 & Year×Use FE ✓ ✓ ✓ ✓

Weighted ✓ ✓ ✓ ✓

HS4 Trend ✓ ✓ ✓ ✓

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: This table repeats the baseline specification but adds linear trends for HS4 codes. Each HS6–year observation

is fractionally allocated across end-uses according to its UN-BEC shares. We estimate on the stacked HS6–year–end-

use panel with HS6 and year × end-use fixed effects; weights are pre-period end-use share multiplied by the HS6

code’s share of imports from China to the United States, and standard errors are clustered by HS6.
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Figure S1: Robustness to Anchoring Differently

Note: This figure estimates the event–study under four alternative definitions of the exposure anchor used to scale

coefficients: (i) the 2019 effective wedge (baseline), (ii) the 2018 wedge, (iii) the average of the 2018–2019 wedges,

and (iv) the maximum of the two. The dynamic profiles are nearly identical across anchors, with flat pre–trends

through 2017, a sharp rise in 2018–2019, and persistent positive coefficients thereafter. The only exception is the

extensive margin when exposure is anchored to 2018, where the coefficients appear attenuated or slightly negative

immediately after 2018.

This discrepancy is mechanical. The 2018 wedge captures only the partial–year effect of tariff exposure, since most

Section 301 tariffs were announced in the spring and implemented between July and September 2018. The exposure

variable therefore understates the full shock in that year, while the dependent variable—the share of HS6 products

exhibiting positive transshipment—responds to the cumulative policy change by the end of the year. In other words,

the denominator (the wedge) is too small relative to the behavioral response, biasing the per–unit effect downward.

When exposure is defined using the 2019 wedge, or alternatively using the average or maximum of the 2018–2019

wedges to account for the phase–in of tariffs, the extensive–margin coefficients align closely with the baseline pat-

tern. The intensive–margin results are virtually unaffected across all anchors. Overall, the event–study evidence

is robust to how the exposure anchor is defined, and the muted 2018–anchor response is fully consistent with the

mid–year timing of tariff implementation and the partial measurement of exposure in that year.
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Table S10: Transshipment Response to Tariffs (2016-2019)

Intensive Margin Extensive Margin

sinh
−1(𝜃 low) sinh

−1(𝜃high) 1(𝜃 low > 0) 1(𝜃high > 0)

(1) (2) (3) (4) (5) (6) (7) (8)

Δ𝑘,𝑡 0.168
∗∗∗

0.854
∗∗∗

1.63 1.40

(0.028) (0.165) (1.08) (1.10)

Δ𝑘,𝑡 × Cap 0.157
∗∗∗

0.822
∗∗∗

1.32 1.15

(0.043) (0.260) (1.31) (1.32)

Δ𝑘,𝑡 × Con 0.094
∗∗∗

0.264
∗∗

0.669 0.302

(0.024) (0.125) (1.41) (1.45)

Δ𝑘,𝑡 × Int 0.311
∗∗∗

1.85
∗∗∗

3.87
∗∗∗

3.68
∗∗∗

(0.046) (0.245) (0.480) (0.490)

R
2

0.35 0.36 0.44 0.45 0.49 0.49 0.47 0.47

Observations 22,880 22,880 22,880 22,880 22,880 22,880 22,880 22,880

HS6 & Year×Use FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Weighted ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: This table reports the coefficients for regressions of (7). Each HS6–year observation is fractionally allocated

across end-uses according to its UN-BEC shares. We estimate on the stacked HS6–year–end-use panel with HS6 and

year × end-use fixed effects; weights are pre-period end-use share multiplied by the HS6 code’s share of imports

from China to the United States, and standard errors are clustered by HS6.
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Figure S2: Aggregate Transshipment Comparing Treated to Untreated Codes

Notes: This shows the intensive margin of transshipment for both treated and untreated HS6 codes following

the construction as described in the text.
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Table S11: The Entropy-Weighted Effect of Tariffs on Transshipment

Intensive Margin Extensive Margin

sinh
−1(𝜃 low) sinh

−1(𝜃high) 1(𝜃 low > 0) 1(𝜃high > 0)

(1) (2) (3) (4)

Δ𝑘,𝑡 0.275
∗∗∗

0.862
∗∗∗

2.12
∗∗∗

2.06
∗∗∗

(0.045) (0.135) (0.532) (0.527)

Observations 54,912 54,912 54,912 54,912

R
2

0.40 0.49 0.52 0.52

HS6 & Year×Use FE ✓ ✓ ✓ ✓

Weighted ✓ ✓ ✓ ✓

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: We re-weight HS6 units via entropy balancing so that treated (top quartile of pre-period wedge) and con-

trol have identical pre-period moments of diversion (winsorized and standardized). The panel regressions are re-

estimated with weights = 2017 exposure × EB weights × pre-period end-use share, HS6 and year×end-use fixed

effects, and HS4-clustered SEs. Coefficients are per unit of the wedge. Estimates are effectively unchanged, indicat-

ing the results are not driven by pre-period imbalances.
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Table S12: Heterogeneous Fixed Costs Along the Intensive Margin

sinh
−1(𝜃 low) sinh

−1(𝜃high)

(1) (2) (3) (4) (5) (6)

Δ𝑘,𝑡 0.266
∗∗∗

0.266
∗∗∗

0.208
∗∗∗

0.803
∗∗∗

0.802
∗∗∗

0.614
∗∗∗

(0.044) (0.043) (0.035) (0.134) (0.132) (0.101)

Δ𝑘,𝑡 × Pre-2017 Hub Intensity 0.059 0.374
∗∗

(0.052) (0.150)

Δ𝑘,𝑡 × Bulkiness -0.045 -0.304
∗∗

(0.030) (0.151)

Δ𝑘,𝑡 × Electronics 0.089
∗∗∗

0.331
∗∗∗

(0.028) (0.083)

R
2

0.40 0.40 0.41 0.50 0.49 0.51

Observations 54,912 54,912 54,912 54,912 54,912 54,912

Weighted ✓ ✓ ✓ ✓ ✓ ✓

HS6 & Year×Use FE ✓ ✓ ✓ ✓ ✓ ✓

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: Each column reports regressions of sinh
−1 (𝜃𝑘,𝑡 ) on the effective wedge and its interaction with a pre-2017

product characteristic. Hub intensity is the standardized share of China’s pre-2017 exports of product 𝑘 routed

through third-country hubs. “Bulkiness” is kilograms per U.S. dollar of import value. “Electronics” is an indicator for

HS2 codes 84, 85, or 90. HS6 and year×use fixed effects are included; observations are weighted by 2017 China→US

exposure multiplied by pre-period end-use share; standard errors are clustered by HS6. Coefficients are per unit

of the wedge (log gross factor). The interaction terms measure how the wedge effect varies across products with

different pre-existing hub exposure, bulkiness, or electronics content.
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Table S13: Heterogeneous Fixed Costs Along the Extensive Margin

1(𝜃 low > 0) 1(𝜃high > 0)

(1) (2) (3) (4) (5) (6)

Δ𝑘,𝑡 2.07
∗∗∗

2.14
∗∗∗

1.92
∗∗∗

1.99
∗∗∗

2.04
∗∗∗

1.83
∗∗∗

(0.533) (0.522) (0.541) (0.530) (0.518) (0.539)

Δ𝑘,𝑡 × Pre-2017 Hub Intensity 0.345 0.493

(0.376) (0.405)

Δ𝑘,𝑡 × Bulkiness 0.043 -0.188

(0.260) (0.296)

Δ𝑘,𝑡 × Electronics 0.280 0.317

(0.219) (0.238)

R
2

0.52 0.52 0.52 0.52 0.52 0.52

Observations 54,912 54,912 54,912 54,912 54,912 54,912

Weighted ✓ ✓ ✓ ✓ ✓ ✓

HS6 & Year×Use FE ✓ ✓ ✓ ✓ ✓ ✓

* p < 0.1, ** p < 0.05, *** p < 0.01

Notes: The procedure is the same as in Table S12, except we now have the extensive margin as the dependent

variable.
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Table S14: Percent difference between baseline and leave-one-out: 100 × 𝛽𝐿𝑂𝑂−𝛽
𝛽

Country Code Extensive (High) Extensive (Low) Intensive (High) Intensive (Low)

CAN -17.741 -17.074 17.887 19.343

JPN -3.000 -4.686 30.124 29.223

MEX 4.916 4.173 31.988 25.131

DEU -8.019 -7.489 23.321 13.826

SGP -17.408 -16.486 2.176 3.188

TWN -10.480 -11.643 3.447 5.798

MYS -1.852 -2.032 3.420 9.883

VNM -45.038 -44.523 0.136 4.061

HKG -13.705 -12.496 0.476 1.888

IDN -1.840 -1.933 1.845 5.406

IND -0.433 0.745 7.272 8.685

THA -1.719 -0.346 3.393 7.414

KHM -1.019 1.706 1.225 6.550

POL -1.388 -0.611 2.198 2.402

TUR 1.561 1.202 1.371 1.862

Notes: For each regression specification, I leave out one hub and recompute the coefficient. After that, I compute

the percent difference between the leave-one-out estimate and the baseline regression. For example, the leave-one-

out coefficient when excluding Canada from the sample is 17 percent smaller than the baseline intensive margin

coefficient from Column 1 of Table S1. The table shows the most influential fifteen hubs.
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Figure S3: Local Projections of Transshipment from Tariffs

Note: This figure estimates a local projection of the form

𝑓 (𝜃𝑘,𝑡+ℎ) − 𝑓 (𝜃𝑘,𝑡−1) = 𝛼𝑖 + 𝛿𝑡×𝑒 (𝑘 ) +𝜓𝑡+ℎΔ𝑘,𝑡 + 𝜀𝑘,𝑡+ℎ .

I do this for both the extensive margin, using the linear probability model from the main text, as well as an intensive

margin with the inverse hyperbolic sine transformation. Standard errors are clustered by HS6 code.
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