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In this note, I extend smooth local projections to panel data and use Monte Carlo meth-
ods to explore the bias and variance properties of smooth local panel projections (SLPP).
SLPP allows researchers to penalize the impulse respond toward a polynomial, while
standard local panel projections (PLP) are nonparametric but result in theoretically un-
appealing IRFs because they are too lumpy. In general, an econometrician should prefer
SLPP over standard local panel projections unless he places a strong weight on bias or
the sample size is very large. When the true impulse response function (IRF) is linear, the
econometrician should always use SLPP. Additionally, I show that a wild cluster boot-
strap is robust and preferable to regular clustered standard errors unless the true impulse
response function is very lumpy. Finally, I apply SLPP to oil news shocks from Arezki,
Ramey, and Sheng (2017).
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1 Introduction

Economists increasingly rely on panel local projections to study the dynamic effects of
shocks. Because of the extra dimension of variation offered by panel data over time se-
ries, Herbst and Johannsen (2024) document that a large share of studies utilizing lo-
cal projections rely on panel data. Indeed, with the advent of panel local projections
in difference-in-difference studies, panel local projections are an important tool for both
macroeconomists and microeconomists alike (Dube et al. 2023). At the same time, be-
cause panel local projections are nonparametric, the resulting impulse responses are un-
appealingly lumpy; coefficients jump from horizon to horizon in a way that is a result
of noise and cannot be meaningfully justified with economic theory. In this note, I make
several contributions toward solving that problem. First, I extend smooth local panel
projections from time series to panel data and offer a flexible way to compute confi-
dence intervals. Second, I give evidence from Monte Carlo simulations that as long as re-
searchers have some confidence in the shape of the impulse response, they should choose
smooth local panel projections (SLPP) over standard local panel projections. Third, I ap-
ply the method to studying the dynamic responses of macroeconomic variables to oil
news shocks. Fourth, I provide an easy to use R package and vignette.1

SLPP offers researchers the ability to discipline the behavior of the impulse response
function with panel data. Theory typically suggests that impulse responses should be lin-
ear, quadratic, or if overshooting is a possibility, a cubic function. SLPP allows researchers
to penalize impulse responses toward one of those polynomials by linking impulse re-
sponse coefficients across horizons using B-spline basis functions. This is not a new ad-
vance over previous work; Barnichon and Brownlees (2019) develop this methodology
for time series data. Rather, the key benefit is instead the new ability to leverage both the
cross-sectional and time series dimensions to appropriately select the penalty parameter
and appeal to researchers using both micro and macro data. Additionally, panel data of-
fer a rich variety of options for standard errors. As Barnichon and Brownlees (2019) point
out, it is unclear how to construct standard errors for penalized IRFs. This paper relies on
a wild bootstrap that can cluster at any level of aggregation, but can be extended to other
options.

Additionally, in keeping with Li, Plagborg-Møller, and Wolf (2021), I show that re-
searchers should generally prefer SLPP over standard panel LP (PLP). When the shape of
the true IRF is linear, econometricians should always prefer SLPP. This is in keeping with

1. The package, called slpp and vignette can be found here. slpp relies on the fixest package and uses
data on oil shocks from Arezki, Ramey, and Sheng (2017) to demonstrate the package’s capabilities.
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Li, Plagborg-Møller, and Wolf (2021), which shows in a time series context that standard
LP exhibit so much variance that one should simply use penalized LP. The same is true
in this context, especially when the researcher has a prior on the shape of the impulse
response function. I also show that the wild cluster bootstrap has good properties, par-
ticularly if the true IRF is not too lumpy, whereas the confidence intervals from standard
confidence intervals are typically too wide in smaller samples. This result is similar to the
analysis of Kilian and Kim (2011), which also shows that the LP estimator has poor length
properties in time series. I do not analyze SLPP with instrumental variables, but it is easy
to implement.

Roadmap. Section 2 describes the SLPP estimator and Section 3 discusses the results of
Monte Carlo simulations. Section 4 applies the method to oil news shocks. Section 5
concludes.

2 Smooth Local Panel Projections

In this section, I outline the procedure for estimating smooth local projections for panel
data. If readers are already familiar with Barnichon and Brownlees (2019), they can pro-
ceed to the following section; much of the following simply rehashes their Section 2, but
suitably adapted for panel data. Consider a typical dynamic panel regression

yi,t+h = G(i, t) + βhxi,t + Controls + νi,t+h,

for cross-sectional units i = 1, . . . , N estimated at time t + h given a shock to xi,t at time
t. The sequence of coefficients βh from t to t + h consist of the impulse response up to h
horizons out. In general, our interest is in smoothing the coefficient Bh across horizons.
G(i, t) is a set of additive fixed effects that depend on unit i at time t but are not neces-
sarily two-way time and individual fixed effects. For example, one may wish to include
an industry fixed effect or an interaction between time and industry when studying how
firms react to shocks. All that matters in this context is that the dependent and indepen-
dent variables are demeaned with respect to G(i, t). Controls may include anything else
the researcher wishes.2

As in Barnichon and Brownlees (2019), the goal is to make the coefficient βh a smooth
function of the impulse horizon. To do that, we simply use a B-spline basis function to

2. If y is nonstationary, the researcher would should include lags of y.Montiel Olea and Plagborg-Møller
(2021) show that nonstationary LPs are consistent in time series as long as they include lagged regressors.
Of course, this also makes them subject to Nickell bias in a panel data setting.
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approximate the coefficient

βh ≈
K

∑
k=1

bkBk(h)

for K sufficiently large and where Bk : R → R. The B-splines link coefficients across
horizons. The basis functions are polynomial pieces of order q which are continuous at
the kinks by imposing the constraint that all derivatives up to order q − 1 are continuous
at the kinks. There are q+ 2 kinks and each one is called an inner knot. See Barnichon and
Brownlees (2019) and references therein for a more detailed discussion of basis functions.
Following their discussion, I use a cubic basis function throughout.

To set notation, let variables with a tilde denote their demeaned version with respect
to fixed effects G(i, t). Let Hmax denote the maximum forecast horizon. To set notation,
let yyyi,t denote the vector of outcomes (ỹi,t, . . . , ỹ{i,min{T,t+Hmax})

′ with length dt. Let xxxi,t for
t = 1, . . . , T denote the dt × K matrix with element (h, K) equal to Bk(h)xi,t. Next, let Y
denote the stacked vector individual vectors yi,t and X denote the stacked matrices for
individuals xxxi,t. Crucially, both Y and X must retain the original order with respect to the
original order of individual units. Finally, let θ denote the vector of B-splines coefficients
(b1, . . . , bK).

In principle, one could smooth IRFs for multiple variables in SLPP. But in practice,
it is hard to think of an application where that would be either practical or relevant be-
cause researchers frequently only care about the response of a single outcome variable
to a single exogenous shock. Consequently, I focus solely on cases where one wants the
smoothed IRF for one variable. To account for the case with controls, suppose there is a
vector of controls CCCi,t of length J. With J = 1, we would have a dt ×K matrix with element
(h, K) equal to ci,t. That is, rather than multiply by the basis function, we simply multiply
by the identity matrix. The same procedure can be extended for multiple controls.

With that notation, a cookbook for estimating SLPP is the following.

1. Demean data with respect to fixed effects G(i, t).

2. Construct matrices Y and X . Note that maintaining order is crucial for the de-
meaned data. In particular, demeaned data must be ordered within individual clus-
ters by time and horizon regardless of fixed effects. After this step, what follows is
essentially the same as in Barnichon and Brownlees (2019).

3. Select the polynomial order of the impulse response function. In the following
step, I discuss how one can use a ridge regression to penalize the impulse response
toward a polynormial of order r − 1.
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4. Estimate ridge regression:

θ̂ = arg min
θ

{∥Y − X θ|2 + λθ′PPPθ}

=
(
X ′X + λPPP

)−1 X ′Y ,
(1)

where λ > 0 is a shrinkage parameter and P is a symmetric positive semidefinite
penalty matrix. λ determines the bias/variance trade-off in shrinking the impulse
response toward the chosen polynomial order. Researchers should estimate (1) over
a grid of penalty parameters. It is common in typical ridge regression analyses to
use a logarithmic grid ranging from 10−3 to 103.

5. Use generalized cross-validation to select λ. λ penalizes the IRF toward a polyno-
mial of order r − 1. Because panel data can be computationally expensive to deal
with, I propose using a version of generalized cross-validation (Golub, Heath, and
Wahba 1979) rather than cross-fold validation. This relies on the formula

GCV =
1
N

N

∑
i=1

[
yi − ŷi

1 − log(trace(SSS))
N

]2

,

where ŷi are predicted values, N is the number of observations, and SSS is the smoother
matrix given by:

S = X (X ′X + λPPP)−1X ′.

Because trace(SSS) is computationally expensive, I estimate the trace with a stochastic
vector approach (Hutchinson 1990). The trace of SSS is defined as the sum of its diag-
onal elements, trace(SSS) = ∑i Sii . This can be stochastically estimated by following
three steps:

(a) Generating Random Vectors: Generate random vectors z where each compo-
nent of z is independently drawn from a standard normal distribution.

(b) Compute the matrix-vector product SSSz.

(c) Estimate the trace with
trace(SSS) ≈ E[(z′SSSz)].

Then, for a grid of candidate penalty parameters, I select the one which minimizes
the GCV. This is in contrast to Barnichon and Brownlees (2019), which uses K-fold
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cross-validation. That may be a better approach here, but it is computationally too
expensive for many practical applications.

6. Construct confidence bands. In a time series context, Barnichon and Brownlees
(2019) propose using Newey-West standard errors. Because panel data researchers
are often interesting in clustering standard errors, I propose instead using a wild
cluster bootstrap. Here, we can cluster around a chosen characteristic, which al-
lows a great deal of flexibility. At the same time, it can be somewhat more time-
consuming for research designs using instrumental variables.

The method can be readily extended to instrumental variables as in, for example,
Jordà, Schularick, and Taylor (2020). Suppose there is some matrix of demeaned and
appropriately stacked instruments Z for X . Then the SLPP-IV estimator is

θ̂ =
(
Z ′X + λPPP

)−1 Z ′Y . (2)

The rest of the procedure is largely the same as discussed above, except that the wild
bootstrap is applied to both the first stage and the second stage.

3 SLPP in Practice

In this section, I proceed in two steps to discuss how researchers should implement SLPP.
First, I conduct Monte Carlo simulations to compare SLPP to standard panel local projec-
tions (PLP). Second, I discuss how researchers should proceed if they are unsure about
the shape of the true impulse response function.

3.1 Monte Carlo Simulations

To evaluate the performance of SLPP vis-à-vis standard PLP, I consider simple regressions
of the form

yi,t+h = αi + Tt + βhxi,t + εi,t, (3)

where αi is an individual fixed effect, Tt is a time fixed effect, and xi,t is the time−t shock
to y. This is perhaps the most commonly used regression in practice. I evaluate SLPP
under three different DGPs, where the shape of the IRF is linear in the first, quadratic
in the second, and cubic in the third. These are the most theoretically appealing shapes.
Figure 1 plots the targeted impulse responses.
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Figure 1: True IRFs used for Monte Carlo simulations.

The Monte Carlo simulations test a variety of panel sizes. For each panel size, I gen-
erate 5000 replications of sample data for each IRF type. To test the performance of the
bootstrap, I draw 5000 bootstrap samples. Throughout, I use a balanced panel. Each
replication selects a penalty parameter from a grid of penalty parameters from 10−3 to
103 distributed logarithmically over 100 grid points.

Point Estimates

To start, suppose we know what the shape of the underlying process is. In general, this
will not be true and I will address the contrary case in the following subsection. Following
Li, Plagborg-Møller, and Wolf (2021), I compare the performance of SLPP and PLP at each
horizon using the following loss function

Lh
(

β̂h, βh, ω
)
= ω

(
E
[

β̂h − βh

])2
+ (1 − ω)V

[
β̂h

]
, (4)

where ω ∈ [0, 1] is the weight the econometrician places on bias. To place a summary
number on the comparison, I compute the discounted sum of losses at each horizon as

Li(ω) =
H

∑
h=0

(
1

1 + r

)h
Lh,

for i ∈ {SLPP, PLP} where r ≥ 0 is the econometrician’s discount rate and PLP refers to
standard panel local projections. r may be greater than zero because one cares more about
minimizing losses at nearer horizons. I set r = 0. Finally, I compare the performance of
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SLPP and PLP by taking the ratio

ν(ω) =
LPLP(ω)

LSLPP(ω)
.

If v(ω) > 1, then the econometrician should prefer SLPP to PLP. Conversely, if v(ω) < 1,
then the econometrician should prefer PLP. In Figure 2, I plot the curve v(ω) for N = 400
individuals and T = 100 time periods each IRF type. Although the sample is large, which
means that the variance of the PLP estimator is substantially diminished, an econometri-
cian would prefer SLPP for both cubic and quadratic IRFs unless the weight placed on
bias is close to 0.9. In other words, SLPP substantially outperforms PLP. Moreover, an
econometrician would never prefer PLP over SLPP if the true IRF is linear.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

ω

v(ω)

Linear Quadratic Cubic

Figure 2: v(ω) curve for T = 100 time periods and N = 400 individuals.

As a summary measure, consider the threshold variable ω̄, where we say that ω > ω̄

means that the researcher should choose SLPP. Table 1 tabulates ω̄ for linear, quadratic,
and cubic IRFs for sample sizes which are empirically relevant in the data. If the true IRF
is linear, then the researcher should never choose PLP even if he has an overwhelming
prefernce for bias. As more curvature enters the IRF through either a quadratic or a cubic
IRF, then the dominance of SLPP recedes. Even so, threshold values around 0.9 indicate
researchers should generally prefer SLPP. Table 4 tabulates the value of the loss function
for ω ∈ {0, 0.5, 1} to give an idea of the shape of the v(ω) function for varying IRF shapes
and sample sizes.
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N T
ω̄

Linear Quadratic Cubic

50 25 1.00 0.97 0.97
100 25 0.99 0.95 0.95
250 25 0.99 0.89 0.90
50 50 0.99 0.97 0.97

100 50 0.99 0.94 0.95
250 50 0.99 0.87 0.88
50 100 0.99 0.96 0.96

100 100 0.99 0.92 0.94
250 100 0.99 0.83 0.86

Table 1: Threshold value ω̄ for different underlying IRFs and varying sample sizes. If the prefer-
ence for bias exceeds ω̄, then the econometrician should prefer PLP.

Confidence Interval Performance

Standard confidence intervals generally cannot be used with ridge regression, so I in-
stead construct wild cluster bootstrap intervals. In this subsection, I compare the PLP
confidence intervals created from clustering at the individual level to a wild cluster boot-
strap at the same level of aggregation. Table 2 documents coverage properties of the wild
cluster bootstrap for SLPP compared to clustered standard errors constructed analytically
for PLP. Each column reports the percent of the time the 95% confidence interval contains
the true parameter. This is value averages over all horizons. Across all sample sizes, the
PLP and SLPP confidence intervals perform nearly identically in the linear case. How-
ever, introducing some curvature in the true IRF substantially affects the performance of
the wild cluster bootstrap when the time dimension is short. When the time dimension
is at least fifty, then it performs similarly to the analytically computed cluster standard
error for PLP, but a short time dimension is especially problematic for the bootstrap. It
is not surprising that the bootstrap struggles in small samples when there is a lot of cur-
vature. SLPP is biased by construction and will tend to underestimate the curvature of
the function. For example, if there is a theoretical minimum at h = 3, then the β̂3 < β3

because it is biased upward by the smoothing with the higher points. One can get around
this by using more knots or increasing the polynomial order, but the trade-off is that the
estimator just approaches the PLP estimator.
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N T
Linear Quadratic Cubic

PLP SLPP PLP SLPP PLP SLPP

50 25 1.922 0.878 1.941 1.080 1.934 1.216
100 25 0.864 0.402 0.864 0.492 0.864 0.551
250 25 0.683 0.316 0.684 0.391 0.684 0.438
50 50 1.913 0.855 1.932 1.067 1.925 1.206

100 50 0.859 0.389 0.861 0.484 0.857 0.547
250 50 0.680 0.308 0.679 0.384 0.679 0.435
50 100 1.919 0.819 1.911 1.028 1.911 1.166

100 100 0.858 0.373 0.860 0.469 0.856 0.536
250 100 0.680 0.296 0.679 0.371 0.678 0.427

Table 2: Coverage properties of PLP standard errors versus the wild cluster bootstrap.

The length properties of the wild cluster bootstrap for SLPP are also be quite promis-
ing for applied researchers. Table 3 tabulates the length of the 95% confidence interval
for different sample sizes and IRF types. In smaller samples, the length of the SLPP con-
fidence interval is about half that of the equivalently clustered confidence interval and
remains significantly smaller even in large samples. Because the coverage properties are
nearly as good for the SLPP bootstrap, this means that the SLPP is much better at correctly
determining significance as long as there is not too much curvature in the true IRF and
the sample size is not too small.

N T
Linear Quadratic Cubic

PLP SLPP PLP SLPP PLP SLPP

50 25 0.936 0.922 0.931 0.892 0.931 0.930
100 25 0.929 0.877 0.903 0.788 0.931 0.896
250 25 0.915 0.811 0.874 0.745 0.925 0.870
50 50 0.937 0.938 0.939 0.913 0.934 0.932

100 50 0.942 0.937 0.941 0.851 0.950 0.923
250 50 0.942 0.933 0.924 0.801 0.945 0.912
50 100 0.937 0.951 0.939 0.909 0.937 0.921

100 100 0.945 0.945 0.947 0.837 0.953 0.929
250 100 0.949 0.949 0.943 0.784 0.948 0.921

Table 3: Length properties of PLP standard errors versus the wild cluster bootstrap.
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3.2 Uncertainty about the IRF

Economists often have in mind the shape of an IRF prior to engaging with the data. Typ-
ically, a model or a class of models maps into a linear, quadratic, or cubic IRF. However,
one may wish to use the IRF to distinguish between models. For example, capital adjust-
ment costs yield approximately linear IRFs, while investment adjustment costs produce
hump-shaped IRFs. In such situations, when the econometrician has a weak prior on the
shape of the IRF, standard LP will be practically useless because it is too noisy to deter-
mine with any certainty the shape of the IRF. In contrast, a tool like SLPP can be quite
useful. Consider a simple panel local projection of the form

yi,t+h = αi + Tt + βhxi,t + εi,t+h.

Since a significant part of the procedure for SLPP is selecting a polynomial order to dis-
cipline the IRF, one may worry that about naively choosing the wrong polynomial order
will lead to incorrect results. For example, one may select a linear polynomial when the
true IRF is quadratic. However, SLPP is robust to this concern. Through appropriate
selection of the penalty parameter, the resulting IRFs will be quite similar for lower poly-
nomial orders. To show that, I generate sample data with N = 250 cross-sectional units
and T = 50 time periods. In Figure 3, I plot the impulse responses for several different
polynomial orders when the true DGP is either linear, quadratic, or cubic. It turns out
that generalized cross-validation appropriately selects a penalty parameter for all three
cases such that it does not matter very much in practice whether the selected polynomial
order is less than four. However, as the polynomial order increases, the SLPP estimator
increasingly resembles the PLP estimator.

The practical takeaway is that it will generally lead to robust results if the econometri-
cian selects a polynomial of order one, two, or three because the penalty selection process
will ensure that they are all similar. However, one should not select a polynomial order
much higher than three and there is not a good econometric reason to do that anyway.
Moreover, unless one thinks that the IRF is a jump process with a unit root, then it like-
wise is not recommended to select a polynomial of order zero.
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(a) True IRF is linear

(b) True IRF is quadratic (c) True IRF is cubic

Figure 3: Impulse responses for different polynomial orders when the underlying true IRF is
linear, quadratic, or cubic. Sample data are generated from N = 250 cross-sectional units and
T = 50 time periods.

4 An Application to the Dynamic Effects of Oil Shocks

Arezki, Ramey, and Sheng (2017) provides an ideal setting to demonstrate the utility of
SLPP. That paper studies the dynamic effects of oil news shocks using a cross-country
panel. They use a variety of methods to study this including PLP. However, they note in
the appendix that, compared to the dynamic panel estimator they employ,“the estimated
impulse responses [from PLP] are more erratic and often less precise.” Many use cases
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Figure 4: Response of current account/GDP for the PLP in blue and the SLPP (in red) with a 95%
confidence interval and 1000 bootstrap replications.

involve similar sample sizes and consequently exhibit similarly lumpy IRFs, so this paper
is an excellent illustration.

The key contribution of Arezki, Ramey, and Sheng (2017) is to construct, using a novel
data source, a panel of oil news shocks and show that the impulse responses of macro
variables to these shocks conforms to a simple open economy model. The paper also
shows theoretical IRFs, which means it is straightforward to discipline the polynomial
order of the impulse response. In my illustration of SLPP, I use their baseline measure of
the oil news shock, which is the net present value of oil discovery scaled by time t GDP
and discounts the future using country-specific discount rates. As a first application,
consider the response of the current account scaled by GDP to an oil shock in their full
sample of data.3 Since the current account is stationary, this comes from the regression

yi,t+h = αi + Tt + βhxi,t + εi,t+h, (5)

where αi is a country i fixed effect and Tt is a time fixed effect. xi,t is the oil news shock
for country i. Figure 4 plots the impulse response of the current account for up to twenty
years out penalized to a quadratic along with a 95% confidence interval. In blue, I also
plot the PLP estimator. The PLP estimator is incredibly lumpy by comparison, although
there is very little difference in the confidence interval.

As a second example, consider the response of investment/GDP, plotted in Figure 5.
Under KPR preferences, the saving rate should decline, rise, and then fall negative again.

3. I use their replication data and simply filter out any observations without a current account or an oil
shock.
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This suggests disciplining the IRF to a cubic. The smoothed IRF in Figure 5 supports the
theory, but the PLP estimator IRF is ambiguous.

Figure 5: IRF for consumption response for the PLP in blue and the SLPP (in red) with a 95%
confidence interval and 1000 bootstrap replications.

Finally, note that SLPP can easily accommodate cumulative IRFs given by

yi,t+h − yi,t−1 = αi + Tt + βhxi,t + controls + εi,t. (6)

Theory implies that the consumption response to an oil news shock should be flat
(Arezki, Ramey, and Sheng 2017, p. 115) to reflect consumption smoothing. Figure 6
plots the consumption response to an oil news shock. As predicted, it is essentially flat
and positive, albeit not significantly so.

Figure 6: IRF for consumption response for the PLP in blue and the SLPP (in red) with a 95%
confidence interval and 1000 bootstrap replications.
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5 Concluding Remarks

In this paper, I extend smooth local projections from time series to panel data. I show
that the properties of the SLPP estimator are generally robust and SLPP is preferable to
standard panel local projections except in rather extreme circumstances. Additionally,
I show that the estimator is robust to selecting the wrong polynomial order. Finally, I
demonstrated the utility of the estimator through an application to the dynamic effects of
tax policy at the firm level. The cumulative effects are large and persistent over time.
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N T
Linear Quadratic Cubic

ω = 0 ω = 0.5 ω = 1 ω = 0 ω = 0.5 ω = 1 ω = 0 ω = 0.5 ω = 1

50 25 4.66 4.13 1.00 3.18 2.67 0.84 2.55 2.38 0.67

100 25 4.61 3.68 0.98 3.03 2.34 0.81 2.61 2.29 0.64

250 25 4.85 3.06 0.98 3.00 1.78 0.82 2.51 1.92 0.67

50 50 5.02 4.86 0.93 3.31 3.04 0.39 2.57 2.44 0.34

100 50 4.79 4.52 0.87 3.21 2.69 0.44 2.56 2.33 0.27

250 50 5.20 4.33 0.88 3.19 2.18 0.45 2.48 2.02 0.27

50 100 5.40 5.32 0.50 3.46 3.13 0.14 2.75 2.59 0.12

100 100 5.45 5.25 0.62 3.52 2.88 0.17 2.68 2.41 0.10

250 100 5.42 4.96 0.60 3.47 2.25 0.13 2.67 2.10 0.07

Table 4: v(ω) for ω ∈ {0, 0.5, 1}.
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