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1 Introduction

At the end of World War II, corporate income taxes accounted for nearly half of federal tax rev-

enue. Since then, the share of receipts from personal taxes has climbed to over 85 percent, while

the corporate share has dwindled to below 15 percent. Notably, while the average personal tax

rate remained relatively flat over this period, the average effective corporate tax rate fell from

nearly 50 percent to approximately 10 percent. Was this sea change in the tax system welfare-

improving?

Figure 1: Changes in Postwar Sources of Revenue and Tax Rates

Note: The right panel assumes that personal and corporate taxes make up 100% of tax revenue. In reality, they sum

to just over 90%. All series are trend components from the two-sided Christiano and Fitzgerald (2003). I strip out all

components with a frequency less than forty quarters. See the appendix for details on data construction.

There are two necessary inputs to assessing the desirability of the shift. First, in relative terms,

how much do we value the claimants to personal and corporate income? If policymakers place a

greater weight on claimants to personal income than corporate income, then shifting the burden

to personal taxation may not be desirable. Second, what are the fiscal externalities associated with

taxing each margin? This is captured entirely by the elasticity of total government revenue with

respect to each tax rate. That includes the effects on other tax bases statically and dynamically.

For example, when corporate taxes fall, the effects extend beyond the corporate base: higher

investment could lead to higher wages and expand the personal tax base. Indeed, that channel
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constitutes the primary supply-side motivation for corporate tax cuts (Lucas 1990). In short, we

need welfare gradient defining the marginal welfare cost of each tax, as well as a revenue gradient

defining the efficiency cost of each tax in dynamic general equilibrium.

This paper develops a framework that takes exactly those empirical gradients and returns

a scalar metric measuring how close the tax system is to optimal. The framework focuses on

revenue-neutral reforms, which hold total revenue fixed while adjusting the mix across instru-

ments. This isolates the efficiency of tax composition from questions about optimal government

size. The approach builds on a classical marginal reform literature: rather than computing glob-

ally optimal taxes, I ask which revenue-neutral reforms move the system toward the optimum

(Feldstein 1976). Tirole and Guesnerie (1981) showed that the optimal revenue-neutral reform is

the projection of the welfare gradient onto the revenue-neutral hyperplane. I extend this result

in two ways. First, the projection formula applies to present-value gradients, allowing the frame-

work to handle dynamic settings where tax changes generate persistent effects across time and

instruments. Second, I leverage the geometric structure to derive a sufficient statistic for tax sys-

tem efficiency by comparing the direction in which the welfare and revenue gradients point. At

the Ramsey optimum, the gradients are proportional and no revenue-neutral reform can improve

welfare. Away from the optimum, they diverge, and the angle 𝜃 between them characterizes dis-

tance from optimality: cos𝜃 measures alignment with the Ramsey optimum, and the welfare gain

from optimal reform scales with sin𝜃 .

Implementing the framework requires both gradients. The welfare gradient captures how

marginal changes in each tax affect social welfare. By the envelope theorem, the first-order wel-

fare cost of raising a tax is the mechanical burden on taxpayers. Following the marginal value

of public funds literature (Hendren 2016), under utilitarian weights this is simply the vector of

tax bases, which I observe directly from national accounts data. The revenue gradient is more

challenging: it requires estimating how total government revenue responds to tax changes, ac-

counting for behavioral responses across all bases and over time.

I estimate the revenue gradient using narrative tax shocks to the personal and corporate in-

come tax bases. Mertens and Ravn (2013a, 2014), extending Romer and Romer (2010), construct

exogenous shocks for both corporate and personal income taxes; I use the extension from Cloyne

et al. (2022) through 2019. For each instrument, I cumulate discounted impulse responses to con-

struct present-value revenue gradients. This builds on McKay and Wolf (2023) and Caravello,

McKay, and Wolf (2024), who show that impulse responses to policy shocks are sufficient to con-

struct Lucas-critique-robust counterfactuals.
1

My application is more limited: I evaluate whether

1. Moon (2025) proposes empirical Bayes methods for incorporating uncertainty about policy impacts into optimal

policy choice. I treat estimation uncertainty as measurement error, focusing on evaluating historical reforms rather

than choosing policies.
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actual tax changes moved toward or away from the locally optimal direction, which requires only

the revenue gradients at the observed baseline.
2

The elasticities this approach delivers differ from taxable income elasticities in the public fi-

nance literature, which measure individual responses to marginal rates holding prices fixed. Stan-

dard estimates range from 0.1 to 0.4 (Saez, Slemrod, and Giertz 2012). Mertens and Montiel Olea

(2018) estimate larger aggregate elasticities around 1.2 using narrative shocks, closer to my ap-

proach. Badel, Huggett, and Luo (2020) and Kleven et al. (2025) argue that even these understate

long-run responses because they miss human capital accumulation. My estimates go further:

they capture how aggregate bases respond to aggregate average rate changes, allowing wages,

interest rates, and organizational form to adjust in general equilibrium over a five-year horizon.

The average rate reflects the combined effect of all marginal rates, deductions, credits, and base

definitions that move together in actual legislation, the bundle of incentives that constitutes a

real-world tax reform. The approach bridges structural and sufficient statistics methods: it cap-

tures cross-base spillovers that partial equilibrium misses and dynamic accumulation that static

approaches ignore, while avoiding the parametric disagreements that divide structural models.

Applying this framework to postwar U.S. data reveals a dramatic improvement in tax system

efficiency. The alignment metric cos𝜃 rose from severely negative in the 1950s to nearly one by

the 2010s, indicating the tax system moved from maximal misalignment to near-optimality. The

welfare stakes from this misalignment were large: in the 1970s, a 1 percentage point reform in

the optimal revenue-neutral direction would have improved welfare by approximately 0.7% of

GDP—over $150 billion in today’s dollars. By the 2020s, the same reform would yield only 0.05%

of GDP. The improvement tracks the corporate share of income tax revenue almost perfectly.

When corporate revenue was half of income tax collections, the high elasticity of the corporate

base pushed the revenue gradient away from the welfare gradient. As the corporate share fell, this

wedge disappeared and the gradients converged. The results are robust to alternative discount

rates, estimation methods, and welfare weights. The practical implication: there is little left to

gain from reforming the income tax mix. Future efficiency improvements must come from other

margins, such as base-broadening, rate structure, or the boundary between income and other

taxes. This implies that contemporary debates over corporate versus personal taxation—which

remain politically salient—are primarily about distribution rather than efficiency.

The framework also evaluates individual reforms. The Economic Recovery and Tax Act of 1981

and the 2017 Tax Cuts and Jobs Act moved toward the Ramsey optimum. On the other hand, the

Tax Reform Act of 1986 moved the opposite direction: it shifted relative burden toward corporate

income (Auerbach and Slemrod 1997), and alignment dipped temporarily before resuming its

upward trend. Whatever its merits for base-broadening and rate-flattening, TRA 1986 moved

2. In principle, the methodology could be extended by leveraging anticipated tax shocks.
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against the efficiency margin measured here.

It is important to note the scope of these findings. The framework evaluates the composition

of revenue between corporate and personal income taxes, not the structure within either base.

Efficiency gains from flattening rate schedules, broadening bases, or reforming the treatment of

capital gains operate on margins this analysis does not capture. The framework also abstracts

from payroll taxes, consumption taxes, and state and local taxation, other margins where cross-

base spillovers may create misalignment. Finally, the welfare analysis adopts a utilitarian bench-

mark. The results are robust to varying the relative weights on corporate versus personal in-

come taxpayers. However, the framework treats all personal income taxpayers as a single group,

abstracting from the distribution of tax burdens within the personal tax base. The framework

identifies whether revenue should shift between corporate and personal taxation, not how the

personal tax burden should be distributed across income groups.

Related Literature Existing approaches to evaluating tax composition face a fundamental

trade-off between capturing general equilibrium forces and avoiding parametric disagreement.

Structural general equilibrium models capture both cross-base spillovers and dynamic accumu-

lation, but require parametric commitment that leads to fundamentally different conclusions.

For example, neoclassical models conclude the postwar shift toward personal taxation was opti-

mal (Chari, Nicolini, and Teles 2020), while overlapping generations models reach the opposite

conclusion (Conesa, Kitao, and Krueger 2009). Even within the neoclassical framework, the opti-

mal tax on capital—and hence the optimal direction of reform—depends sensitively on preference

specifications and heterogeneity (Straub and Werning 2020). Sufficient statistics approaches avoid

this model dependence by working directly with causal elasticities (Chetty 2009; Hendren 2016).

However, existing implementations typically rely on static own-base elasticities estimated from

micro data (Saez 2001; Hendren and Sprung-Keyser 2020), missing both the cross-base spillovers

and dynamic accumulation that are first-order for evaluating tax composition.
3

Both approaches

characterize global optima, which implicitly define optimal reform directions from any given

baseline. Their parametric disagreements over where the optimum lies therefore translate into

disagreements over which direction to reform.

I address this by directly characterizing optimal reform directions without computing global

optima, combining tools from the classical marginal reform literature with modern empirical

methods. Following Feldstein (1976), I focus on marginal reforms rather than globally optimal

3. Other limitations arise even within the Diamond and Mirrlees (1971) model from which the sufficient statistics

approach stems. Bhandari, Borovička, and Yao (2025) point to robustness concerns, echoing Mankiw, Weinzierl, and

Yagan (2009) that the Diamond and Saez (2011) result depends critically on the unknown distribution of types. Saez,

Slemrod, and Giertz (2012) argue, as this paper does, that it is critical to account for spillovers between instruments—

in their case, between capital gains and labor income.
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taxes. I build on Dixit (1975)’s characterization of welfare-improving directions, adopting the

projection formula from Tirole and Guesnerie (1981): the optimal revenue-neutral reform is the

orthogonal projection of the welfare gradient onto the revenue-neutral hyperplane. I extend

Ahmad and Stern (1984)’s application to actual tax data in two ways: first, by estimating dynamic

general equilibrium elasticities that capture cross-base spillovers rather than requiring complete

elasticity matrices from cross-sectional data; second, by introducing scalar metrics that measure

distance from optimality.

The empirical implementation builds on the marginal value of public funds (MVPF) literature’s

insight that fiscal externalities can be estimated from causal evidence (Hendren 2016; Finkel-

stein and Hendren 2020). By the envelope theorem, evaluating marginal reforms requires only

willingness-to-pay and the fiscal externality. I estimate these fiscal externalities using narra-

tive identification, constructing present-value revenue gradients from impulse responses to tax

shocks. This extends Bergstrom, Dodds, and Rios (2024)’s multi-instrument framework to dy-

namic settings where tax changes generate persistent effects across time and instruments.

Roadmap. The remainder of the paper proceeds as follows. Section 2 develops the projec-

tion framework for static revenue-neutral reform, showing that aggregate gradients are sufficient

statistics and deriving the geometric solution. Section 3 extends the framework to incorporate

dynamic effects. Sections 4 and 5 implement the framework empirically, estimating present-

value revenue and welfare gradients from narrative shocks and evaluating the complete history

of postwar federal reforms. Section 6 concludes.

2 The Geometry of Reform

This section formalizes the projection framework for evaluating multi-instrument tax reforms.

The framework shows that the optimal direction of revenue-neutral reform depends on two suf-

ficient statistics—the welfare gradient and the revenue gradient—which can be estimated from

reduced-form evidence without specifying a full structural model. Despite the generality of the

setup, the framework yields a simple geometric characterization: the optimal reform is the or-

thogonal projection of the welfare gradient onto the revenue-neutral hyperplane, and system

efficiency is measured by a single scalar: the alignment between welfare and revenue objectives.

This alignment metric is simply the cosine of the angle between the two gradients.

Section 2.1 introduces notation and derives the welfare and revenue gradients. Section 2.2

establishes the projection formula and shows the revenue gradient is a sufficient statistic. Sec-

tion 2.3 develops scalar metrics that measure proximity to the Ramsey optimum and the scope for

revenue-neutral reform. Section 2.4 demonstrates through a two-instrument example how par-
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tial equilibrium approaches can prescribe reforms in the opposite direction from the optimum.

Section 3 extends the framework to dynamic economies.

2.1 Setup: Taxes, Bases, and Gradients

Tax instruments and bases. Let 𝜏𝜏𝜏 = (𝜏1, . . . , 𝜏𝑛)⊤ ∈ R𝑛 denote a vector of 𝑛 tax rates levied on

different economic activities. Each instrument 𝑖 has a corresponding tax base 𝐵𝑖 (𝜏𝜏𝜏) that depends

on the entire tax vector. The vector of tax bases is B : R𝑛 → R𝑛 , B(𝜏𝜏𝜏) = (𝐵1(𝜏𝜏𝜏), . . . , 𝐵𝑛 (𝜏𝜏𝜏))⊤. Total

tax revenue is:

𝑅(𝜏𝜏𝜏) =
𝑛∑︁
𝑖=1

𝜏𝑖𝐵𝑖 (𝜏𝜏𝜏) . (1)

Tax bases change with tax rates for standard economic reasons. At low rates, behavior is rel-

atively inelastic; as taxes rise, behavioral responses grow and revenue may decline. Importantly,

there are spillovers from one base to the other. For example, a cut in the corporate tax rate may

increase the labor tax base by raising the capital stock, which increases labor productivity and

wages. Indeed, this type of spillover is the primary reason many policymakers and economists

cite for corporate tax cuts.

Assumption 1 (Differentiability). Fix a baseline 𝜏𝜏𝜏 ∈ R𝑛 with 𝐵𝑖 (𝜏𝜏𝜏) > 0 for all 𝑖 . Assume that
ln𝐵𝑖 is continuously differentiable in ln(1 − 𝜏𝑘) in a neighborhood of 𝜏𝜏𝜏 , so there exists a matrix of
retention-rate elasticities

𝜀𝜀𝜀 (𝜏𝜏𝜏) :=

©­­­­«
𝜀11 · · · 𝜀1𝑛

...
. . .

...

𝜀𝑛1 · · · 𝜀𝑛𝑛

ª®®®®¬
, 𝜀𝑖𝑘 (𝜏𝜏𝜏) :=

𝜕 ln𝐵𝑖 (𝜏𝜏𝜏)
𝜕 ln(1 − 𝜏𝑘)

����
𝜏𝜏𝜏=𝜏𝜏𝜏

. (2)

The elasticity 𝜀𝑖𝑘 measures the percent change in base 𝑖 from a one-percent decrease in the tax

rate (1−𝜏𝑘). Off-diagonals 𝜀𝑖𝑘 (𝑖 ≠ 𝑘) capture cross-base spillovers. For example, complementarity

between capital and labor ensures that low capital taxes raise labor productivity, expanding the

labor base. Assumption 1 simply encodes that the private sector is well-behaved enough to be

differentiable. I intentionally leave micro-foundations unspecified, allowing the framework to

accommodate any behavioral model that generates smooth tax base responses.

Given this structure, the two objects that matter for reform are how welfare and revenue

respond to marginal tax changes. I now derive these gradients.

The revenue gradient. The revenue gradient, 𝑟 (𝜏𝜏𝜏) := ∇𝜏𝜏𝜏𝑅(𝜏𝜏𝜏), is the key input for the forth-

coming reform problem. As Section 2.2 will show, this gradient serves as a sufficient statistic
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by aggregating all behavioral responses into a single vector that fully characterizes the optimal

reform direction. Its 𝑖-th component can be derived from the full elasticity matrix 𝜀𝜀𝜀:

𝑟𝑖 =
𝜕𝑅

𝜕𝜏𝑖
= 𝐵𝑖

[
1 − 𝜏𝑖

1 − 𝜏𝑖
𝜀𝑖𝑖 − Λ𝑖

]
, Λ𝑖 ≡

1

1 − 𝜏𝑖

∑︁
𝑘≠𝑖

𝜏𝑘
𝐵𝑘

𝐵𝑖
𝜀𝑘𝑖 . (3)

The 𝑖-th element of the revenue gradient is composed of three parts. The first is mechanical (+1);

it is how much revenue would change if there was no fiscal externality from changing taxes. This

externality is split into the own-base effect (using 𝜀𝑖𝑖 ) and the general equilibrium spillover effect

(Λ𝑖 ), which aggregates all cross-base fiscal externalities. As a special case, I also define the partial

equilibrium revenue gradient which has 𝑖-th entry

𝑟PE

𝑖 = 𝐵𝑖

[
1 − 𝜏𝑖

1 − 𝜏𝑖
𝜀𝑖𝑖

]
. (4)

The partial equilibrium case assumes the elasticity matrix 𝜀𝜀𝜀 is diagonal. This is equivalent to

assuming all cross-base spillovers are zero (𝜀𝑘𝑖 = 0 for 𝑘 ≠ 𝑖), which means the spillover term

Λ𝑖 = 0.

Welfare. The government has some money-metric welfare objective function𝑊 (𝜏𝜏𝜏) measured

in dollars.
4

Higher𝑊 is worse (a social cost). We measure welfare changes by the dollar amount

residents would pay to avoid a tax increase, aggregated across income groups using social welfare

weights.

Assumption 2 (Welfare regularity). 𝑊 is Fréchet differentiable at 𝜏𝜏𝜏 , so there exists a gradient

𝑔(𝜏𝜏𝜏) := ∇𝜏𝜏𝜏𝑊 (𝜏𝜏𝜏) ∈ R𝑛 with 𝑊 (𝜏𝜏𝜏 + ℎ) =𝑊 (𝜏𝜏𝜏) + 𝑔(𝜏𝜏𝜏)⊤ℎ + 𝑜 (∥ℎ∥) . (5)

By the envelope theorem, the first-order welfare cost of raising tax 𝑖 is the mechanical tax

burden on domestic residents (Hendren 2016; Hendren and Sprung-Keyser 2020). Suppose a

marginal increase in 𝜏𝑖 raises residents’ tax payments by 𝛾𝑖𝐵𝑖 dollars (where 𝛾𝑖 ∈ [0, 1] is the

incidence share falling on domestic residents), and let 𝛾𝑖 :=
∑
𝑔 𝜔𝑔𝑠𝑔𝑖 be the welfare-weighted

incidence constructed from group-specific social welfare weights 𝜔𝑔 > 0 and marginal incidence

shares 𝑠𝑔𝑖 (with

∑
𝑔 𝑠𝑔𝑖 = 𝛾𝑖 ). Then:

𝑔𝑖 (𝜏𝜏𝜏) = 𝛾𝑖𝐵𝑖 (𝜏𝜏𝜏). (6)

Equation (6) says the marginal welfare cost of instrument 𝑖 is the incidence- and welfare-

4. If utility is in utils, let 𝑊 be compensating variation at a fixed numeraire price and normalize the marginal

value of public funds to one. All local results are invariant to this choice up to a positive scalar.
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weighted tax base. For the empirical implementation of this framework, however, I adopt a stan-

dard utilitarian benchmark. Under this assumption, the marginal welfare cost of a tax is the size

of the tax base. This simplifies the welfare gradient considerably: the welfare-weighted incidence

is equal to one for domestic taxes, and the welfare gradient component 𝑔𝑖 simplifies to the ob-

servable tax base 𝐵𝑖 . Later, this simplification will also cleanly separate the empirical challenge.

The welfare gradient 𝑔 can be constructed directly from baseline data, while the revenue gradient

must be estimated.

Themarginal cost of public funds. Pairing the welfare gradient 𝑔𝑖 with the revenue gradient

yields the marginal cost of public funds:

MCPF𝑖 =
𝑔𝑖

𝑟𝑖
=

𝛾𝑖

1 − 𝜏𝑖
1−𝜏𝑖 𝜀𝑖𝑖 − Λ𝑖

.

At a global optimum, MCPFs are equalized across instruments (Appendix A.1 derives this for-

mally). When MCPFs differ, which is the typical case empirically, then there exists scope for

welfare-improving revenue-neutral reform. Section 2.2 characterizes the optimal direction of

such reforms.

2.2 Policy as Projection

The problem of reform arises when MCPFs differ across instruments. When this occurs, there

exist directions of tax adjustment that improve welfare while holding total revenue fixed. The

planner’s local problem is to identify the reform direction 𝑑𝜏𝜏𝜏 that maximizes the first-order wel-

fare gain subject to revenue neutrality:

max

𝑑𝜏𝜏𝜏
−𝑔(𝜏𝜏𝜏)⊤𝑑𝜏𝜏𝜏 subject to 𝑟 (𝜏𝜏𝜏)⊤𝑑𝜏𝜏𝜏 = 0. (7)

The welfare gradient 𝑔 measures how marginal tax changes affect social welfare; the revenue gra-

dient 𝑟 measures how they affect government revenue, accounting for all behavioral responses

including cross-base spillovers. This constrained optimization problem has a simple geometric so-

lution, established by Tirole and Guesnerie (1981): the optimal reform direction is the orthogonal

projection of the welfare gradient onto the revenue-neutral hyperplane.

Lemma 1 (Gradient projection; Tirole and Guesnerie (1981)). Let 𝜏𝜏𝜏 be a baseline with welfare
gradient 𝑔(𝜏𝜏𝜏) and revenue gradient 𝑟 (𝜏𝜏𝜏) ≠ 0. The optimal revenue-neutral reform direction is

𝑑𝜏𝜏𝜏∗ = −𝛼 𝑃⊥𝑟𝑔

∥𝑃⊥𝑟𝑔∥
, (8)
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where 𝛼 > 0 is the reform magnitude in percentage points and 𝑃⊥𝑟 := 𝐼 −𝑟 (𝑟⊤𝑟 )−1𝑟⊤ is the projection
operator onto the hyperplane orthogonal to 𝑟 .

The derivation is in Appendix A.2. Intuitively, the projection operator 𝑃⊥𝑟 decomposes the

welfare gradient 𝑔 into two orthogonal components: a parallel component that points along the

revenue gradient 𝑟 (which would change revenue) and a perpendicular component that lies in the

revenue-neutral hyperplane. The optimal reform follows this perpendicular component, identi-

fying the direction of steepest welfare improvement among all revenue-neutral reforms.

Figure 2 illustrates this decomposition. The welfare gradient𝑔 (blue) splits into a parallel com-

ponent 𝑔∥ = ∥𝑔∥ cos𝜃 along the revenue gradient 𝑟 and an orthogonal component 𝑔⊥ = ∥𝑔∥ sin𝜃

perpendicular to 𝑟 . If we could move freely along 𝑔—ignoring the revenue constraint—we would

achieve the steepest welfare improvement. However, moving along𝑔would change total revenue,

violating revenue-neutrality. The projection operator resolves this tension by extracting the per-

pendicular component, yielding 𝑃⊥𝑟𝑔 (red) as the optimal revenue-neutral reform direction.

Figure 2: Geometric Decomposition of Optimal Policy

𝑟 (revenue gradient)

𝑔 (welfare gradient)

𝑔∥ = ∥𝑔∥ cos𝜃

𝑔⊥ = ∥𝑔∥ sin𝜃

−𝑃⊥𝑟𝑔

𝜃

Baseline

Note: The welfare gradient 𝑔 (blue) decomposes into a parallel component 𝑔∥ = ∥𝑔∥ cos𝜃 along the revenue

gradient 𝑟 and an orthogonal component 𝑔⊥ = ∥𝑔∥ sin𝜃 perpendicular to 𝑟 . The optimal revenue-neutral reform

direction is −𝑃⊥𝑟𝑔 (red), which points opposite to the perpendicular component of welfare cost.

2.3 Alignment Metrics

While the projection formula is a classical result, this section develops scalar metrics that measure

how far the tax system is from optimal and how much welfare improvement is available through

revenue-neutral reform. The geometry in Figure 2 depends entirely on the angle 𝜃 between the

welfare and revenue gradients. This angle determines both proximity to the Ramsey optimum
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and the scope for revenue-neutral reform. Define the system alignment as:

cos𝜃 =
𝑔⊤𝑟

∥𝑔∥ ∥𝑟 ∥ ∈ [−1, 1] . (9)

This is the standard inner product formula for the angle between vectors. Geometrically, cos𝜃

measures the correlation between welfare costs and revenue changes.

Proposition 1 (System alignment and revenue-neutral potential). The efficiency of the tax system
is characterized by two scalar metrics:

1. System alignment: cos𝜃 measures proximity to the Ramsey optimum. When cos𝜃 = 1, welfare
and revenue objectives are perfectly aligned and the system is optimal. When cos𝜃 = 0, the
gradients are orthogonal and inefficiency stems purely from tax composition. When cos𝜃 < 0,
raising taxes increases welfare cost but reduces revenue.

2. Revenue-neutral potential: sin𝜃 measures the share of potential welfare gains achievable
through revenue-neutral reform. The first-order welfare gain from a reform of size 𝛼 (in per-
centage points) in the optimal direction is

Δ𝑊 ≈ −𝛼 ∥𝑔∥ sin𝜃 . (10)

Proof. The optimal reform direction is 𝑑𝜏∗ = −𝛼 𝑃⊥𝑟𝑔
∥𝑃⊥𝑟𝑔∥ , where 𝛼 is the reform magnitude in per-

centage points. The first-order welfare change is Δ𝑊 = 𝑔⊤𝑑𝜏∗ = −𝛼 ∥𝑃⊥𝑟𝑔∥ = −𝛼 ∥𝑔∥ sin𝜃 . □

These scalar metrics are new to the literature. While Tirole and Guesnerie (1981) develop

methods for computing reform paths, they provide no summary statistics for measuring system

efficiency or evaluating observed reforms.

The revenue-neutral potential sin𝜃 is maximized when the gradients are orthogonal (𝜃 =

90°) and declines symmetrically toward zero as 𝜃 approaches either 0° or 180°. This reflects a

fundamental decomposition: the welfare gradient𝑔 splits into a component parallel to the revenue

gradient (which revenue-neutral reform cannot address) and a perpendicular component (which

it can). Whether the system is moderately misaligned on the right side (𝜃 = 60°) or the wrong side

(𝜃 = 120°) of the Laffer curve, the perpendicular component—and thus revenue-neutral potential—

has the same magnitude.

The sign and magnitude of cos𝜃 characterize the tax system’s efficiency. When cos𝜃 = 1,

the gradients are collinear: this is the Ramsey optimum, where MCPFs are equalized and no

revenue-neutral reform can improve welfare. When cos𝜃 = 0, the gradients are orthogonal:

inefficiency stems purely from tax composition, and all welfare improvement is available without

fiscal cost (sin𝜃 = 1). Intermediate values indicate partial misalignment. For example, cos𝜃 =

10



0.5 implies sin𝜃 ≈ 0.87—nearly nine-tenths of potential welfare gains are achievable revenue-

neutrally. Negative values (cos𝜃 < 0) indicate that raising taxes increases welfare cost but reduces

total revenue; this occurs when cross-base spillovers dominate own-revenue effects. Appendix

Table A.1 summarizes.

Beyond measuring system efficiency, the framework evaluates whether historical reforms

moved in the right direction. For an observed reform 𝑑𝜏𝜏𝜏actual
, we compute its directional align-

ment with the optimal reform 𝑑𝜏𝜏𝜏∗:

cos𝜙 =
(𝑑𝜏𝜏𝜏actual)⊤𝑑𝜏𝜏𝜏∗

∥𝑑𝜏𝜏𝜏actual∥ ∥𝑑𝜏𝜏𝜏∗∥
. (11)

This statistic inherits the same interpretation as cos𝜃 . When 𝜙 ≈ 0° (cos𝜙 ≈ 1), the actual reform

moved nearly parallel to the optimal direction. It was well-designed given the economy’s position.

When 𝜙 ≈ 90° (cos𝜙 ≈ 0), the reform was orthogonal, neither helping nor hurting. When 𝜙 > 90°

(cos𝜙 < 0), the reform moved opposite to the welfare-improving direction, making the system

less efficient. Together, cos𝜃 (system position) and cos𝜙 (reform direction) provide a complete

characterization of tax policy.

The projection formula, while derived geometrically, enforces the classic intuition of MCPF

equalization. Rewriting equation (8) component-wise:

𝑑𝜏∗𝑖 ∝ −𝑔𝑖 +
(
𝑟⊤𝑔

𝑟⊤𝑟

)
𝑟𝑖 = −𝑟𝑖

(
𝑔𝑖

𝑟𝑖
− 𝑟

⊤𝑔

𝑟⊤𝑟

)
.

Define MCPF𝑖 = 𝑔𝑖/𝑟𝑖 and the revenue-weighted average MCPF = (𝑟⊤𝑔)/(𝑟⊤𝑟 ):

Corollary 1 (MCPF equalization). The optimal reform direction satisfies

𝑑𝜏∗𝑖 ∝ −𝑟𝑖 (MCPF𝑖 − MCPF). (12)

The projection automatically lowers taxes on instruments with above-average MCPFs and

raises taxes on instruments with below-average MCPFs. MCPF equalization emerges as a conse-

quence of the geometric projection.

2.4 A Two-Instrument Example

The alignment metrics depend on the revenue gradient 𝑟 , which aggregates both own-base re-

sponses and cross-base spillovers. What happens if a planner ignores the spillovers and uses a

partial equilibrium revenue gradient 𝑟PE
instead? This subsection shows that the error can be

severe: partial equilibrium analysis not only mismeasures system alignment but can prescribe
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reforms in the opposite direction from the true optimum.

Consider an economy with two tax instruments: a tax on labor income and a tax on capital

income. Output is produced with a concave production function 𝑌 = 𝐹 (𝐾, 𝐿), so the tax bases are

𝐵𝐾 = 𝐹𝐾𝐾 and 𝐵𝐿 = 𝐹𝐿𝐿. If capital and labor are complements in production (𝐹𝐾𝐿 > 0), a higher

capital tax reduces the capital stock, which reduces wages and shrinks the labor tax base. This

spillover means the true revenue gradient for capital taxes is smaller than the PE estimate:

𝑟GE

𝐾 = 𝐵𝐾

(
1 − 𝜏𝐾

1 − 𝜏𝐾
𝜀𝐾𝐾 − Λ𝐾

)
< 𝑟PE

𝐾 = 𝐵𝐾

(
1 − 𝜏𝐾

1 − 𝜏𝐾
𝜀𝐾𝐾

)
,

where Λ𝐾 ≡ 𝜏𝐿𝐵𝐿
𝐵𝐾 (1−𝜏𝐾 )𝜀𝐿𝐾 > 0 captures the cross-base spillover. The PE planner thinks capital

taxes raise more revenue than they actually do.

Figure 3: The Geometric Failure of Partial Equilibrium

Note: Starting from baseline policy (black dot), the partial equilibrium reform (red arrow) projects onto the PE

revenue-neutral line (red dashed) and prescribes raising capital taxes. The general equilibrium reform (blue arrow)

projects onto the correct revenue-neutral line (blue dashed) and prescribes lowering capital taxes—the opposite

direction.

Figure 3 illustrates the consequences. The GE revenue-neutral line (blue) and PE revenue-

neutral line (red) have different slopes because PE ignores spillovers. The projection formula tells

the planner to project the welfare gradient onto the revenue-neutral line—but the PE planner

projects onto the wrong line. The result: GE prescribes lowering capital taxes and raising labor

taxes, while PE prescribes the opposite. When cross-base spillovers are large, partial equilibrium

analysis can reverse the optimal reform direction entirely.
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The example illustrates a general point: the alignment metric cos𝜃 is only as good as the

revenue gradient used to compute it. A partial equilibrium gradient 𝑟PE
yields a different angle

𝜃PE
, potentially indicating alignment when the system is actually misaligned (or vice versa).

3 An Extension to Dynamics

The static framework in Section 2.2 treats tax changes as one-time adjustments with contempora-

neous effects. In reality, tax policy has persistent consequences. A corporate tax cut today raises

investment, growing the capital stock and expanding future labor bases through production com-

plementarity. A labor tax increase discourages human capital investment, shrinking future tax

bases. These intertemporal spillovers are first-order determinants of the marginal cost of public

funds, yet they are invisible in static analysis. This section shows that the projection framework

extends naturally to dynamic settings: time is simply additional dimensions in the policy vector,

and present-value gradients aggregate all intertemporal spillovers.

3.1 Dynamic Reforms

Dynamic setup. Let the government choose tax rates {𝜏𝑖,𝑡 }𝑡=0,...,𝑇
𝑖=1,...,𝑛

across𝑛 instruments and𝑇 +1

periods. Stack these into a policy vector:

𝜏𝜏𝜏 := (𝜏1,0, . . . , 𝜏𝑛,0, 𝜏1,1, . . . , 𝜏𝑛,1, . . . , 𝜏1,𝑇 , . . . , 𝜏𝑛,𝑇 )⊤ ∈ R𝑛(𝑇+1) .

Discounting. I discount both welfare and revenue at the social discount factor 𝛽 = 1/(1 + 𝜌),
where 𝜌 is society’s rate of time preference. This assumes the government’s borrowing rate equals

the social discount rate, 𝑟debt = 𝜌 . When these diverge, the projection formula requires dual

discounting as developed in Appendix G.

Tax bases at each date depend on the entire policy sequence: 𝐵𝑖,𝑡 (𝜏𝜏𝜏). A change in 𝜏𝑖,𝑡 affects

not only base 𝑖 at date 𝑡 (the contemporaneous own-base effect) but also other bases at other dates

through intertemporal spillovers. Present-value revenue is:

𝑅PV(𝜏𝜏𝜏) :=

𝑇∑︁
𝑡=0

𝛽𝑡𝑅𝑡 (𝜏𝜏𝜏) =
𝑇∑︁
𝑡=0

𝛽𝑡
𝑛∑︁
𝑖=1

𝜏𝑖,𝑡𝐵𝑖,𝑡 (𝜏𝜏𝜏). (13)

Present-value revenue gradient. The present-value revenue gradient 𝑟PV
:= ∇𝜏𝜏𝜏𝑅PV ∈ R𝑛(𝑇+1)

can be derived using the same decomposition as the static case. To see this, introduce stacked

notation. Let 𝑎 ≡ (𝑖, 𝑡) and 𝑏 ≡ (𝑘, 𝑠) denote (instrument, date) pairs. Define discounted bases
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and tax rates

𝐵̃𝑎 := 𝛽𝑡𝐵𝑖,𝑡 , 𝜏𝑎 := 𝜏𝑖,𝑡 ,

and the present-value GE elasticity matrix 𝜀𝑏𝑎 :=
𝜕 ln𝐵𝑘,𝑠

𝜕 ln(1−𝜏𝑖,𝑡 ) stacked over all (𝑘, 𝑠) and (𝑖, 𝑡). Then

from 𝑅PV =
∑𝑇
𝑠=0

𝛽𝑠
∑
𝑘 𝜏𝑘,𝑠𝐵𝑘,𝑠 it follows that

𝜕𝑅PV

𝜕𝜏𝑖,𝑡
= 𝛽𝑡𝐵𝑖,𝑡 +

∑︁
𝑠,𝑘

𝛽𝑠𝜏𝑘,𝑠
𝜕𝐵𝑘,𝑠

𝜕𝜏𝑖,𝑡
= 𝐵̃𝑎 −

1

1 − 𝜏𝑎

∑︁
𝑏

𝜏𝑏𝐵̃𝑏𝜀𝑏𝑎 .

Separating the own term 𝑏 = 𝑎 from the rest gives the exact analogue of the static formula:

𝑟PV

𝑖,𝑡 = 𝐵̃𝑖,𝑡

[
1 − 𝜏𝑖,𝑡

1 − 𝜏𝑖,𝑡
𝜀(𝑖,𝑡),(𝑖,𝑡) − ΛPV

𝑖,𝑡

]
(14)

The present-value spillover term ΛPV

𝑖,𝑡 aggregates how tax instrument 𝑖 at time 𝑡 affects all

other tax bases across all future periods—capturing fiscal externalities that compound over time

through capital accumulation, human capital investment, and other dynamic adjustments. This

is the core empirical challenge. Most existing estimates of the marginal cost of public funds are

partial equilibrium: they use only the contemporaneous own-base elasticity 𝜀𝑖𝑖 and ignore both

cross-base spillovers and intertemporal persistence (Finkelstein and Hendren 2020; Hendren and

Sprung-Keyser 2020). This can severely bias MCPF estimates. For instance, if capital and labor are

complements, a corporate tax increase erodes the labor base over time, making the true revenue

gradient much smaller than the partial equilibrium calculation suggests. Section 4 shows how

to estimate ΛPV

𝑖,𝑡 directly from the cross-base impulse responses in a structural VAR, capturing

general equilibrium spillovers without calibrating a specific production function.

The present-value revenue gradient 𝑟PV

𝑖,𝑡 admits two complementary decompositions. Equa-

tion (14) provides an economic decomposition into mechanical effect (𝐵̃𝑖,𝑡 ), contemporaneous

own-base response (𝜀(𝑖,𝑡),(𝑖,𝑡)), and all intertemporal spillovers (ΛPV

𝑖,𝑡 ). This parallels the static for-

mula exactly—the only difference is that spillovers now include effects across time as well as

across instruments.

Alternatively, a temporal decomposition splits by when revenue effects occur:

𝑟PV

𝑖,𝑡 = 𝛽𝑡
𝜕𝑅𝑡

𝜕𝜏𝑖,𝑡︸ ︷︷ ︸
Contemporaneous

+
∑︁
𝑠<𝑡

𝛽𝑠
𝜕𝑅𝑠

𝜕𝜏𝑖,𝑡︸      ︷︷      ︸
Anticipation

+
∑︁
𝑠>𝑡

𝛽𝑠
𝜕𝑅𝑠

𝜕𝜏𝑖,𝑡︸      ︷︷      ︸
Persistence

. (15)

The contemporaneous term is the static revenue effect at date 𝑡—what partial equilibrium anal-

ysis captures. The anticipation and persistence terms capture intertemporal spillovers: how tax

changes at time 𝑡 affect revenue at other dates 𝑠 ≠ 𝑡 . These correspond to upper-diagonal (an-
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ticipation) and lower-diagonal (persistence) entries in the Jacobian matrix 𝜕𝑅𝑠/𝜕𝜏𝑖,𝑡 . Both an-

ticipation and persistence effects are embedded in the spillover term ΛPV

𝑖,𝑡 , which aggregates all

off-diagonal elasticities 𝜀(𝑘,𝑠),(𝑖,𝑡) for (𝑘, 𝑠) ≠ (𝑖, 𝑡). To illustrate the economic channels underlying

these spillovers, we consider three examples:

Example 1: Human capital accumulation (lower-diagonal, own-base). Consider an increase in

the labor tax at 𝑡 = 0 whose effects persist through subsequent periods. Workers respond by

reducing human capital investment (education, training), as the after-tax return to skill accumu-

lation has fallen. This shrinks the labor tax base 𝐵𝐿,𝑡 in all future periods:

𝜕𝐵𝐿,𝑡

𝜕𝜏𝐿,0
< 0 for all 𝑡 > 0. (16)

The static MCPF, which uses only the contemporaneous elasticity 𝜀𝐿𝐿 (the short-run labor

supply response), misses these persistent effects. Empirical estimates of 𝜀𝐿𝐿 from contemporane-

ous variation typically yield small values around 0.2 (Chetty et al. 2011). But Badel, Huggett, and

Luo (2020) and Kleven et al. (2025) show that accounting for human capital investment raises the

present-value elasticity. The true 𝑟PV

𝐿,0
is much smaller than the static calculation suggests, making

the labor tax more costly than it appears in static partial equilibrium:

𝑟PV

𝐿,0 = 𝛽0
𝜕𝑅0

𝜕𝜏𝐿,0
+

𝑇∑︁
𝑡=1

𝛽𝑡
𝜕𝑅𝑡

𝜕𝜏𝐿,0
≪ 𝜕𝑅0

𝜕𝜏𝐿,0
.

Example 2: Capital accumulation (lower-diagonal, cross-base). A corporate tax increase at 𝜏𝐾,0

reduces investment, shrinking the capital stock over time. If capital and labor are complements

in production (𝐹𝐾𝐿 > 0), the reduced capital stock lowers the marginal product of labor (wages),

eroding the labor tax base in future periods:

𝜕𝐵𝐿,𝑡

𝜕𝜏𝐾,0
< 0 for all 𝑡 > 0.

This cross-base, intertemporal spillover compounds the static fiscal externality from Sec-

tion 2.4. The present-value revenue gradient for the capital tax includes the cumulative effect

on labor revenue:

𝑟PV

𝐾,0 = 𝛽
0
𝜕𝑅0

𝜕𝜏𝐾,0
+

𝑇∑︁
𝑡=1

𝛽𝑡
(
𝜕𝑅𝐾,𝑡

𝜕𝜏𝐾,0
+ 𝜕𝑅𝐿,𝑡
𝜕𝜏𝐾,0

)
,

where the second term in the sum captures the cross-base spillover. Vergara and Swonder (2025)

account for the cross-partial statically, but not dynamically in their analysis of TCJA.

Example 3: Anticipation effects (upper-diagonal). Forward-looking agents adjust behavior to-

day in response to announced future reforms. Suppose the government announces at 𝑡 = 0 that
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the capital tax will be cut at 𝑡 = 5: 𝜏𝐾,5 falls, but 𝜏𝐾,𝑡<5 remains unchanged. Firms delay investment

from periods 𝑡 < 5 to period 𝑡 = 5 and beyond, when the after-tax return is higher. This shrinks

the capital tax base before the reform is implemented:

𝜕𝐵𝐾,𝑡

𝜕𝜏𝐾,5
≠ 0 for 𝑡 < 5.

These anticipation effects—upper-diagonal entries in the Jacobian—mean that the present-

value revenue cost of the reform is larger than the static calculation at 𝑡 = 5 would suggest.

Mertens and Ravn (2012) exploit announcement timing to estimate these effects directly, dis-

tinguishing announcement dates from implementation dates in their narrative tax shock series.

Their impulse responses trace out
𝜕𝑅𝑠
𝜕𝜏𝑖,𝑡

for all 𝑠 (including 𝑠 < 𝑡 ), providing reduced-form estimates

of the upper-diagonal entries.

Welfare and the projection formula. The present-value welfare is defined analogously, using

the social discount factor:

𝑊 PV(𝜏𝜏𝜏) :=

𝑇∑︁
𝑡=0

𝛽𝑡𝑊𝑡 (𝜏𝜏𝜏), (17)

with welfare gradient 𝑔PV
:= ∇𝜏𝜏𝜏𝑊 PV ∈ R𝑛(𝑇+1)

.

Having stacked the dynamic problem into a single policy vector in R𝑛(𝑇+1)
, the projection

machinery from Section 2.2 applies immediately. The revenue-neutral hyperplane is now defined

by 𝑟PV⊤𝑑𝜏𝜏𝜏 = 0, and the optimal reform projects the welfare gradient onto this hyperplane.

Corollary 2. At an interior solution, the government’s optimal revenue-neutral reform is

𝑑𝜏𝜏𝜏∗ = −𝑃⊥𝑟PV𝑔PV, (18)

where 𝑃⊥𝑟PV = 𝐼 − 𝑟PV(𝑟PV⊤𝑟PV)−1𝑟PV⊤ projects onto the hyperplane orthogonal to the present-value
revenue gradient 𝑟PV.

The projection formula is identical to Lemma 1. The policy space is R𝑛(𝑇+1)
instead of R𝑛 , but

the geometric logic is unchanged. Time is just additional dimensions. Cross-time spillovers—

captured by off-diagonal entries 𝜀(𝑘,𝑠),(𝑖,𝑡) for 𝑠 ≠ 𝑡—are analogous to cross-base spillovers in the

static case.

3.2 Debt Finance and the Scope of the Analysis

Real-world fiscal reforms rarely occur under strict revenue neutrality. The Tax Cuts and Jobs Act

of 2017 reduced taxes by approximately $1.5 trillion over ten years without offsetting revenue
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increases, expanding the federal deficit (JCT 2017). How should we evaluate such deficit-financed

reforms?

The alignment metric cos𝜃 answers a narrow question: holding total revenue fixed, is the

composition of taxes efficient? It measures whether revenue is raised from the right mix of in-

struments, not whether the level of revenue is appropriate. A tax system can have cos𝜃 ≈ 1

(near-optimal composition) while running large deficits or collecting too little revenue. The met-

ric is silent on these questions. When I find that TCJA moved in the optimal direction (cos𝜙 > 0),

this means it improved the corporate-personal mix—not that its deficit financing was justified.

Evaluating deficit financing requires a separate analysis. Issuing government debt is equiva-

lent to choosing the timing of taxation. The transversality condition ensures all debt must even-

tually be repaid:

lim

𝑇→∞
𝛽𝑇𝐷𝑇 = 0 ⇒ 𝐷0 =

∞∑︁
𝑡=0

(
1

1 + 𝑟debt

)𝑡
[𝐺𝑡 − 𝑅𝑡 ], (19)

where 𝑟debt is the government’s borrowing rate. Debt does not eliminate the need for taxation; it

defers it. The question “should we issue more debt?” is therefore equivalent to “should we lower

taxes today and raise them tomorrow?”

The dynamic projection framework developed in this section is general: it nests Chamley’s

(1986) zero capital tax theorem, Barro’s (1979) tax smoothing result, and Ramsey’s (1927) opti-

mality condition as special cases when present-value revenue gradients take particular limiting

forms. Appendix H develops these connections. But the empirical question does not require

solving for the global optimum. It asks: given the tax system we observe, how far is it from opti-

mal, and did historical reforms move in the right direction? The following section estimates the

present-value gradients needed to answer this question.

Answering this requires comparing the MCPF of immediate revenue-neutral financing to the

present-value MCPF of future repayment. However, the actual repayment path is unobserved for

historical reforms and depends on future political choices. Evaluating the optimality of deficit

timing is therefore a distinct question from evaluating the optimality of tax composition—just as

optimal government spending is distinct from optimal taxation. This paper focuses on composi-

tion; Appendix G extends the framework to joint evaluation of composition and timing.

4 Estimation of General Equilibrium Dynamic Elasticities

As an application of the geometric framework, I examine whether the postwar decline in corpo-

rate tax burdens relative to personal tax burdens moved the U.S. tax system toward or away from

efficiency. Figure 1 shows that the corporate share of federal revenue fell from nearly 50% in the
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late 1940s to around 10% by 2019, while the personal income tax share grew correspondingly. This

shift raises a natural question: did the rebalancing improve welfare, or would revenue-neutral re-

forms in the opposite direction—higher corporate taxes, lower personal taxes—have been prefer-

able?

The projection framework answers this question by characterizing the alignment between

welfare and revenue objectives. The alignment metric cos𝜃 measures how close the tax system

is to the Ramsey optimum, while sin𝜃 measures the share of potential welfare gains achievable

through revenue-neutral rebalancing. If welfare and revenue gradients point in similar directions

(cos𝜃 near one), the system is near-optimal and the postwar shift may have been efficient. If the

gradients are misaligned (cos𝜃 near zero or negative), substantial welfare gains were available,

and whether the observed reforms moved toward or away from the optimum depends on the sign

of their directional alignment with the optimal reform. In this section, I assemble the ingredients

for estimating these alignment statistics—the revenue and welfare gradients for personal and

corporate income taxes—using narratively-identified VARs. Section 5 then applies these estimates

to evaluate historical reforms.

4.1 Identification and Estimation

The key empirical object is the present-value revenue gradient 𝑟𝑃𝑉
𝑗

=
∑∞
ℎ=0

𝛽ℎ
𝜕𝑅𝑡+ℎ
𝜕𝜏 𝑗,𝑡

. This captures

how an exogenous change in tax rate 𝑗 at date 𝑡 affects total government revenue at all future

dates, accounting for dynamic adjustments and general equilibrium spillovers across tax bases.

Estimating this gradient requires identifying exogenous variation in tax rates and tracing out

the dynamic response of tax bases to tax shocks at all horizons. Concretely, I estimate impulse

responses of log tax bases to shocks in log retention rates ln(1 − 𝜏 𝑗 ), where 𝜏 𝑗 is the average tax

rate on instrument 𝑗 . Cumulating and discounting these IRFs yields the present-value elasticities

that enter the gradient formula.
5

The welfare gradient also follows from the impulse responses. Under utilitarian welfare

weights, the first-order welfare cost of a tax increase equals the mechanical burden on taxpayers—

the tax base—discounted over the horizon. Unlike the revenue gradient, the welfare gradient does

not depend on the persistence of the identified shock: we evaluate the welfare cost of a permanent

5. The empirical analysis uses average tax rates rather than statutory marginal rates for three reasons. First, the

theoretical framework in Section 2.1 defines revenue as 𝑅𝑖 = 𝜏𝑖𝐵𝑖 , where 𝜏𝑖 is the average rate. The revenue gradient

𝜕𝑅/𝜕𝜏 therefore requires variation in average rates. Second, the U.S. tax code features graduated rate schedules

with rates varying across income brackets, types of income, and categories of taxpayers, so no single statutory rate

summarizes the policy stance. The average rate—total revenue divided by the base—provides the natural aggregate

measure. Third, many historical reforms changed the effective tax burden without altering statutory rates at all.

Base-broadening measures such as limiting deductions, accelerating depreciation schedules, or restricting credits

raise the average rate even when the statutory schedule remains unchanged. The revenue-based narrative measure

captures these reforms, which statutory rate series would miss.
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marginal reform using elasticities identified from temporary shocks. The tax rate IRFs nonethe-

less play a key role: their persistence 𝜅 𝑗 =
∑𝐻
ℎ=0

𝛽ℎ · IRFℎ (ln(1 − 𝜏 𝑗 )) enters the revenue gradient

formula and normalizes the base responses into permanent-equivalent elasticities. The following

subsection provides the precise formulas.

The narrative approach provides the exogenous variation needed to estimate revenue gradi-

ents. I follow the identification strategy developed by Romer and Romer (2010) and extended by

Mertens and Ravn (2013a) to distinguish personal and corporate income taxes. Romer and Romer

(2010) read the Congressional Record and Treasury documents to classify major federal tax leg-

islation from 1945 to 2007 according to the motivations policymakers articulated at the time.

They code a reform as exogenous when the legislative record indicates policymakers pursued

objectives unrelated to the contemporaneous business cycle—such as long-run deficit reduction,

ideological commitments, or tax simplification—rather than short-run stabilization. Mertens and

Ravn (2013a) refine the series by separating personal and corporate tax changes and excluding re-

forms implemented more than 90 days after announcement to avoid anticipation effects. I extend

their series through 2019 using the classification in Cloyne et al. (2022).

Each reform receives a quantitative measure equal to the projected revenue impact scaled by

the lagged tax base, as announced at the time of enactment. This scaling delivers an approxima-

tion to the change in the average tax rate on that instrument. The resulting series are denoted

𝑚𝑃𝐼
𝑡 for personal income taxes and𝑚𝐶𝐼

𝑡 for corporate income taxes.

The narrative measures serve as instruments for latent structural tax shocks rather than en-

tering as regressors directly. As discussed in Mertens and Ravn (2013a), the two instruments are

contemporaneously correlated because Congress often adjusts personal and corporate taxes in

the same legislation. This correlation means the instruments identify only the two-dimensional

subspace spanned by the structural shocks, not the individual shocks themselves. Additional re-

strictions are required to separate them.
6

Following Mertens and Ravn (2013a) and Cloyne et

al. (2022), I use the narrative measures as external instruments to identify the contemporaneous

impact matrix 𝐴0. Let 𝑍𝑡 denote the vector of endogenous variables (tax rates, tax bases, GDP,

government spending, and debt). A reduced-form VAR produces residuals 𝑢𝑡 , which relate to

structural shocks 𝜀𝑡 via:

𝑢𝑡 = 𝐴0𝜀𝑡

where 𝜀𝑡 are mutually orthogonal structural shocks with unit variance and𝐴0 is the contempora-

neous impact matrix. The external instruments identify the columns of 𝐴0 corresponding to tax

6. Cloyne et al. (2022) shows that both VAR-identified instruments are strong.
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shocks through the moment conditions:

𝐸 [𝑚𝑡𝜀
′
𝑡𝑎𝑥,𝑡 ] = Φ ≠ 0, 𝐸 [𝑚𝑡𝜀

′
𝑜𝑡ℎ𝑒𝑟,𝑡

] = 0

where𝑚𝑡 = (𝑚𝑃𝐼
𝑡 ,𝑚

𝐶𝐼
𝑡 )′, 𝜀𝑡𝑎𝑥,𝑡 denotes the two structural tax shocks, and 𝜀𝑜𝑡ℎ𝑒𝑟,𝑡 denotes all other

structural disturbances. The first condition requires the instruments to correlate with the tax

innovations; the second requires them to be uncorrelated with non-tax shocks.

The two narrative instruments are correlated, so the proxy-SVAR identifies a two-dimensional

subspace of tax shocks but does not uniquely separate personal from corporate shocks within this

subspace. To isolate each shock, I apply a Cholesky decomposition to the identified subspace, or-

dering the shock of interest last. When estimating responses to the personal tax shock, I order the

personal tax rate last, imposing that the personal shock has no contemporaneous effect on the

corporate rate; when estimating responses to the corporate shock, I reverse the ordering. This

approach does not require a single structural model that simultaneously satisfies both restric-

tions. Each column of the elasticity matrix is estimated from a separate single-shock experiment,

and the alignment metric requires only the individual revenue gradients—not a joint structural

interpretation of both shocks.

I estimate impulse responses using the two-stage Bayesian local projection framework devel-

oped by Cloyne et al. (2022). The first stage estimates a Bayesian VAR with hierarchical priors

following Giannone, Lenza, and Primiceri (2015). Hyperparameters governing overall shrinkage

are treated as random and sampled via Metropolis-Hastings. For each draw from the BVAR pos-

terior, I apply the identification procedure described above to recover a draw of 𝐴0. This delivers

the causal impact of each tax shock on all variables in the system at horizon zero.

The second stage estimates local projections at each horizon ℎ ≥ 1:

𝑍𝑡+ℎ = 𝑐
(ℎ) + 𝐵 (ℎ)

1
𝑍𝑡−1 +

𝑝∑︁
𝑗=2

𝑏
(ℎ)
𝑗
𝑍𝑡− 𝑗 + 𝑢𝑡+ℎ, var(𝑢𝑡+ℎ) = Ωℎ (20)

where 𝑝 = 4 lags. At horizon zero, the residuals 𝑢𝑡 relate to the structural shocks via 𝑢𝑡 = 𝐴0𝜀𝑡 .

The impulse response at horizon ℎ is 𝐼𝑅𝐹ℎ = 𝐵
(ℎ−1)
1

𝐴0. I estimate equation (20) with Bayesian

methods using a Minnesota prior and Student-𝑡 errors to accommodate fat tails. Appendix C

provides complete details on prior specification and the MCMC algorithm.

Bayesian estimation offers three advantages: it propagates identification uncertainty from𝐴0

into the impulse response posterior, it improves precision at long horizons where LP variance

is high (Li, Plagborg-Møller, and Wolf 2024), and it produces posterior draws for straightfor-

ward inference on the alignment metrics. I use local projections rather than propagating shocks

through a VAR because the present-value gradient requires reliable estimates over extended hori-
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zons, where VARs can suffer from misspecification bias due to lag truncation. However, I also

show that the main results are robust to a variety of alternative estimation methods including

standard local projections, penalized local projections, smooth local projections, Bayesian VARs,

and proxy SVARs.

Data The baseline specification includes four variables:

𝑍𝑡 =

[
log (1 − APITR𝑡 ) , log (1 − ACITR𝑡 ) , ln𝐵𝑃𝐼𝑡 , ln𝐵𝐶𝐼𝑡

]
,

where APITR𝑡 and ACITR𝑡 are the average personal and corporate income tax rates, and 𝐵𝑃𝐼𝑡 and

𝐵𝐶𝐼𝑡 are the corresponding tax bases. The sample covers 1947Q1–2019Q4. Following standard

practice in this literature, the corporate base is BEA corporate profits, which includes both C-

corporations and S-corporations; the implications of this measurement choice for interpreting

the cross-elasticity are discussed in Section 4.2. Appendix B provides detailed variable definitions

and data sources.

The revenue gradient requires the total derivative of tax bases with respect to tax rates: the

full response a policymaker would observe, including effects operating through output, invest-

ment, and wages. Adding variables like GDP or government spending would partial out these

channels, estimating a conditional elasticity rather than the total elasticity the theory requires.

Narrative identification does not require additional controls; exogeneity comes from the Romer-

Romer selection criterion, not from the conditioning set. Appendix F develops this argument in

detail and shows that a seven-variable specification following Mertens and Ravn (2013a) yields

qualitatively similar but less precise estimates.

The impulse responses are estimated using the raw (unfiltered) data, which is standard in

the VAR literature. However, for the alignment calculations in Section 5, I extract the long-run

component of tax rates and bases using the Christiano and Fitzgerald (2003) band-pass filter,

retaining only frequencies longer than 40 quarters (10 years). This filtering serves two purposes.

First, it removes business-cycle variation that is orthogonal to the permanent reform experiments

the framework evaluates—the alignment metric measures efficiency of the long-run tax structure,

not cyclical fluctuations in bases. Second, it smooths measurement error in quarterly tax data,

which can be noisy due to timing of payments and refunds.

4.2 Impulse Response Functions and Gradients

Figure E.6 plots discounted cumulative impulse responses to personal tax shocks (left column)

and corporate tax shocks (right column). Each panel shows the running sum

∑ℎ
𝑠=0

𝛽𝑠 · IRF𝑠 as the

horizon ℎ extends from 0 to 20 quarters; the terminal value is the present-value response that
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enters the gradient formulas. Rows display own retention rates (top), corporate base (middle),

and personal base (bottom).

Three patterns emerge. First, corporate tax shocks are more persistent than personal tax

shocks: the cumulative retention rate response reaches approximately 8 percentage points for

corporate taxes but plateaus around 6 for personal taxes. Second, cross-base spillovers are asym-

metric. Personal tax cuts substantially expand the corporate base (middle left), with cumulative

responses exceeding 100 percentage points, while corporate tax cuts have slightly negative effects

on the personal base (bottom right). Third, both own-base responses are positive: corporate tax

cuts expand the corporate base by around 60 percentage points (middle right) and personal tax

cuts expand the personal base by around 9 percentage points (bottom left). The corporate base is

more elastic overall, responding strongly to both shocks.

These cumulative responses map into the gradient formulas. The revenue gradient is:

𝑟𝑃𝑉𝑗 = 𝐵 𝑗,0 ·
[
1 −

𝜏 𝑗

1 − 𝜏 𝑗
𝜀 𝑗 𝑗 −

𝜏𝑘

1 − 𝜏 𝑗
𝐵𝑘

𝐵 𝑗
𝜀𝑘 𝑗

]
, (21)

where each elasticity 𝜀𝑖 𝑗 equals the terminal value in the corresponding base panel of Figure E.6

divided by the cumulative retention rate response 𝜅 𝑗 . Dividing by persistence converts present-

value responses into permanent-equivalent elasticities, ensuring both the revenue and welfare

gradients correspond to the same policy experiment: a permanent marginal reform. The welfare

gradient is simply:

𝑔𝑃𝑉𝑗 = 𝐵 𝑗,0, (22)

since the common annuity factor cancels when computing alignment metrics. The baseline uses

𝛽 = 0.9926 (approximately 3% annual discount rate) and 𝐻 = 20 quarters, following the five-

year horizon in Mertens and Montiel Olea (2018). Table 1 reports the baseline elasticities in a

2 × 2 matrix. The key finding is asymmetric cross-base spillovers: the cross-elasticity 𝜀𝐶𝐿 ≈ 21

is large and positive, while 𝜀𝐿𝐶 ≈ −0.3 is small and negative. Personal tax cuts substantially

expand the corporate base; corporate tax cuts have negligible effects on the personal base. Both

own-elasticities are positive: 𝜀𝐶𝐶 ≈ 8.5 and 𝜀𝐿𝐿 ≈ 1.5.

The magnitude of 𝜀𝐶𝐿 warrants comment. As noted in Section 4.1, the corporate base is BEA

corporate profits, which includes both C-corporations and S-corporations. C-corporations pay

corporate income taxes, but S-corporations are pass-through entities: their profits flow to share-

holders and are taxed at personal rates. When personal taxes fall, S-corporation activity expands,

and this response appears in the measured corporate base even though S-corporation income

does not generate corporate tax revenue. The cross-elasticity therefore captures both traditional

general equilibrium channels (demand effects, labor-capital complementarity) and the direct sen-

sitivity of pass-through business activity to personal tax incentives. The latter channel is quanti-
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tatively important: S-corporations grew from a negligible share of business income in the 1970s

to roughly half by the 2010s (Dyrda and Pugsley 2024; Smith et al. 2022). The data do not per-

mit decomposing the cross-elasticity into these components. For the alignment calculation, what

matters is how measured bases respond to the policy instruments Congress actually uses. Per-

sonal tax legislation affects S-corporation incentives; this fiscal externality belongs in the revenue

gradient regardless of how we classify S-corps conceptually.

These elasticities are estimated once from the full sample and held fixed across time. Time

variation in the alignment metric cos𝜃 comes entirely from changes in tax rates (𝜏𝐿, 𝜏𝐶) and the

relative size of the two bases (𝐵𝐶/𝐵𝐿), which I measure using the long-run (Christiano-Fitzgerald

filtered) components of the data. The revenue gradient formula (21) combines fixed elasticities

with these time-varying bases and rates to produce a quarterly series of alignment statistics.

Table 1: Present-Value Elasticities of Tax Bases

Personal Tax Shock Corporate Tax Shock

𝜀𝐿· (Personal Base) 1.52 -0.34

(0.39, 2.65) (-0.83, 0.07)

𝜀𝐶 · (Corporate Base) 20.88 8.47

(14.53, 29.60) (5.85, 13.54)

Note: Elasticities from Bayesian Local Projections with narrative tax shocks. 95% credible intervals in parenthe-

ses. Each 𝜀𝑖 𝑗 measures the percent change in base 𝑖 per percent change in retention rate (1 − 𝜏 𝑗 ).

Table E.1 in Appendix E reports elasticity estimates across estimation methods. The Bayesian

methods (BLP and BVAR) yield the most precise estimates with similar cross-elasticities (𝜀𝐶𝐿 ≈
19–21). The frequentist local projection variants—standard LP, smooth LP (Barnichon and Brown-

lees 2019), and bias-corrected LP (Herbst and Johannsen 2024)—produce larger point estimates

with wider confidence intervals, though the intervals overlap substantially with the baseline. The

proxy SVAR yields point estimates broadly consistent with the other methods but with confidence

intervals too wide to be informative. This reflects near-zero cumulative persistence of corporate

tax shocks under the SVAR specification: when 𝜅𝐶 → 0, the permanent-equivalent elasticity

𝜀𝐶𝐶 = (PV base response)/𝜅𝐶 is undefined. The SVAR’s corporate shock is too transitory to iden-

tify the long-run elasticities the framework requires. Local projection methods, which do not

impose VAR dynamics on the persistence profile, avoid this problem. Results are similar when

including a linear trend.

These elasticities differ conceptually from the taxable income elasticities in the public finance
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literature. Standard estimates—from bunching at kinks, difference-in-differences around state

tax changes, or tax return panel data—identify individual responses to marginal rates, holding

wages and prices fixed. The elasticities here capture aggregate base responses to average rates,

incorporating general equilibrium adjustments in wages, interest rates, and organizational form.

They are also cumulative over a five-year horizon, capturing dynamic responses through invest-

ment that static estimates miss. The two objects answer different questions: the micro elasticity

asks how one taxpayer responds to their own marginal rate; the macro elasticity asks how total

revenue responds to an aggregate tax change.

Saez, Slemrod, and Giertz (2012) survey the taxable income elasticity literature and conclude

that the best available estimates range from 0.12 to 0.40. Mertens and Montiel Olea (2018), using

narrative identification similar to the present study, find larger aggregate elasticities around 1.2—

somewhat below our 𝜀𝐿𝐿 ≈ 1.5, though well within the credible interval. The gap between micro

and macro estimates reflects general equilibrium amplification and dynamic adjustment. Vergara

and Swonder (2025) survey 25 estimates of the elasticity of corporate taxable profits with respect

to the net-of-tax rate, finding a median of 0.58 and a range from 0.08 to 4.79; our 𝜀𝐶𝐶 ≈ 8.5 is

larger, as expected given that we cumulate general equilibrium responses over a five-year horizon

rather than estimating short-run or partial equilibrium effects. The cross-elasticity 𝜀𝐶𝐿 ≈ 21 has

no analog in the existing literature, which tends to focus on own-base responses.

5 The Postwar Evolution of Tax System Efficiency

The previous section estimated the revenue gradient from narrative tax shocks; the welfare gra-

dient is simply the vector of tax bases under utilitarian weights. With both gradients in hand,

I now apply the projection framework to evaluate U.S. federal income tax policy from 1947 to

2019.For each quarter, I compute the alignment statistics developed in Section 2: cos𝜃 measuring

proximity to the Ramsey optimum, the welfare gain from optimal reform, and cos𝜙 measuring

whether actual reforms moved toward or away from the optimal direction.

The alignment statistics require tax bases and rates at each date. A conceptual question arises:

should we evaluate efficiency at the raw quarterly values, which include cyclical fluctuations, or at

some notion of long-run values? The framework is designed to evaluate permanent reforms—the

elasticities are cumulated over 5 years precisely to capture long-run responses. Evaluating these

permanent-reform statistics at cyclical bases would conflate two distinct questions: whether the

long-run tax structure is efficient (which the framework answers) and whether taxes should vary

over the business cycle (which it does not). I therefore use the Christiano and Fitzgerald (2003)

band-pass filter to extract the trend component of bases and rates, retaining only frequencies

longer than 40 quarters. This ensures the alignment metric measures efficiency of the tax system’s

24



permanent structure rather than transitory deviations driven by recessions or booms.

5.1 Results

Figure 4 presents the central finding, plotting cos𝜃 , the alignment between welfare and rev-

enue gradients. Until 1975, cos𝜃 was negative—indicating that welfare and revenue gradients

were pointing in opposite directions, worse than orthogonal. The gradients crossed orthogonal-

ity around 1980, when cos𝜃 passed through zero. At the Ramsey optimum these gradients are

collinear, so near-orthogonality implies the system was far from optimal. Around 1980, align-

ment sharply improved as cos𝜃 approached 0.8. By around 2020, cos𝜃 exceeded 0.95. The tax

system moved from severe misalignment to near-optimality.

Figure 4: The Evolution of Tax System Efficiency

Note: cos𝜃 is the alignment between welfare and revenue gradients; cos𝜃 = 1 indicates the Ramsey optimum.

Shaded region shows 90% credible interval.

What drove this improvement? Figure 5 reveals that alignment tracks the corporate share

of income tax revenue almost perfectly. When corporate revenue exceeded 40% of income tax

collections in the late 1940s, the system was severely misaligned; as the share fell below 20%,

alignment improved sharply. The relationship is nearly monotonic. The economic logic follows

from equation (21). Two features of the elasticity matrix matter: the corporate base is highly

elastic to both taxes (𝜀𝐶𝐶 ≈ 8.5, 𝜀𝐶𝐿 ≈ 21), and these elasticities enter the revenue gradient scaled

by corporate revenue 𝜏𝐶𝐵𝐶 . When corporate revenue was large, both the own-base response and

the cross-base spillover made corporate taxes appear expensive and personal taxes appear cheap
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in revenue terms relative to welfare terms, pushing the revenue gradient away from the welfare

gradient. As corporate revenue shrank, these elastic responses became fiscally negligible and the

gradients converged.

Figure 5: System Efficiency and the Corporate Revenue Share

Note: Each point represents a quarter, colored by decade. The horizontal axis plots the corporate share of federal

income tax revenue; the vertical axis plots cos𝜃 , the alignment between welfare and revenue gradients. Higher

values indicate greater alignment with the Ramsey optimum.

Why did the corporate share of revenue decline? The postwar economy shifted toward human-

capital-intensive services with smaller corporate profit shares, and globalization enabled multi-

nationals to shift profits to low-tax jurisdictions abroad. Statutory rate cuts and accelerated de-

preciation reinforced these trends. As corporate revenue shrank relative to personal revenue, the

large cross-base elasticities that had pushed the revenue gradient away from the welfare gradient

became fiscally negligible, and alignment improved.

What did this misalignment cost? Figure 6 translates the alignment metric into dollars. In

the 1970s, a 1 percentage point reform in the optimal revenue-neutral direction would have im-

proved welfare by approximately 0.7% of GDP per year—over $150 billion in today’s dollars. By

2020, the same reform would yield only 0.05% of GDP. The large welfare stakes in earlier decades

help explain the intense political attention devoted to corporate versus personal taxation. Con-

temporary debates increasingly concern distribution rather than efficiency—the system is already
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near optimal.
7

Figure 6: Welfare Gains from Optimal Revenue-Neutral Reform

Note: Figure shows the welfare gain from a 1 percentage point reform in the optimal revenue-neutral direction,

expressed as a percent of GDP. Welfare gains are computed as Δ𝑊 = 𝛼 ∥𝑔∥ sin𝜃 , where 𝛼 = 0.01 is the reform size,

∥𝑔∥ is the norm of the welfare gradient (the tax bases), and sin𝜃 measures the share of welfare gains achievable

under revenue neutrality. Shaded region shows 90% credible interval.

A limitation of the empirical implementation is that elasticities are estimated once from the

full sample and held fixed across time. If behavioral responses changed over the postwar period—

due to rising capital mobility, increased tax competition, or the growth of organizational form

arbitrage—the revenue gradient would evolve for reasons beyond the mechanical shifts in bases

and rates visible in Figure 4. Data constraints preclude estimating elasticities on subsamples:

the narrative identification requires sufficient exogenous reforms in each period, and splitting

the sample leaves too few shocks for reliable inference. However, the likely direction of bias

reinforces the main finding. The structural forces that could generate time-varying elasticities—

globalization, profit-shifting, tax competition—plausibly increased corporate tax elasticity over

time. If so, the full-sample estimates understate early-period elasticities, meaning the true early

misalignment was even more severe than Figure 4 suggests. For the fixed-elasticity assumption

to overturn the results, the relative elasticities would need to have changed sign—corporate taxes

becoming less elastic than personal taxes, or cross-base spillovers reversing. Neither is plausible

given the direction of structural change.

7. Appendix Figure D.2 plots the evolution of sin𝜃 over the same time span.
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However, just because the system became more aligned does not mean that it was the result

of good tax reforms. The framework offers a natural tool to investigate that via cos𝜙 , which

evaluates whether reforms actually moved in the optimal reform direction. Figure 7 plots cos𝜙

for each reform in the Mertens and Ravn (2013a) narrative dataset.
8

Until the Reagan era, the

reforms were a mixed bag. However, after Reagan’s Economic Recovery and Tax Act (ERTA) of

1981—which accelerated depreciation further—there were no major welfare-improving reforms

until the 2000s, during which all exogenous reforms were welfare-improving.

Figure 7: The Alignment of Reforms with their Optimal Direction

Note: Each bar plots cos𝜙 , the alignment between the actual reform direction and the optimal direction. Values

near +1 indicate reform moved toward the optimum; values near −1 indicate reform moved away. Error bars show

90% credible intervals.

It is somewhat surprising to find that the post-ERTA reforms were largely inefficient, but it

follows directly from the projection framework. The Deficit Reduction Act of 1984 scaled back

ERTA’s investment incentives. The Tax Reform Act of 1986 (TRA86) went further, eliminating the

investment tax credit, lengthening depreciation schedules, and cutting top personal rates from

50% to 28%. TRA86 shifted a large share of the tax burden from individuals to corporations—

the direction the framework identifies as inefficient, despite TRA86 being widely praised for its

efficiency properties (Auerbach and Slemrod 1997). The dip in cos𝜃 visible in Figure 4 around

8. I evaluate the reform direction using the Mertens and Ravn (2013a) direct shock.
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1986–1987 confirms this: alignment fell temporarily before resuming its upward trend. How-

ever, Poterba (1992) documents that TRA86 also triggered rapid S-corporation growth by cut-

ting personal rates below corporate rates, making pass-through status newly attractive. Since

S-corporation income appears in the measured corporate base but faces personal tax rates, this

compositional shift complicates the interpretation: TRA86 moved against efficiency on the C-

corporation margin while simultaneously expanding pass-through activity that would eventually

shrink the corporate tax share.

The 2000s reforms, starting with accelerated depreciation policies following 9/11, were largely

efficient. Notably, the Tax Cuts and Jobs Act of 2017 (TCJA) was nearly ideal along the compo-

sition margin, cutting the corporate rate from 35% to 21%, increasing investment incentives, and

cutting personal tax rates. Moreover, it is evident from Figure 4 that the post-TCJA system is

nearly optimal, with the optimal direction still pointing toward modestly lower corporate rates—

TCJA moved correctly but did not exhaust all efficiency gains. Yet the remaining gains are small

(sin𝜃 < 0.05). The wide credible interval on TCJA’s cos𝜙 reflects this near-optimality: when the

system is close to the Ramsey optimum, the optimal reform direction becomes nearly indeter-

minate, and small perturbations to the estimated gradients can swing the direction substantially.

My evaluation stands somewhat in contrast to Vergara and Swonder (2025), who find TCJA un-

justifiable unless implausibly large weight is placed on firm owners.
9

The divergence stems from

two sources: they estimate partial equilibrium elasticities with respect to marginal rates, while I

estimate general equilibrium elasticities with respect to average rates; and they evaluate distri-

butional incidence across heterogeneous households, while I adopt a utilitarian benchmark. The

frameworks answer different questions—theirs asks who benefits, mine asks whether composi-

tion is efficient.

A notable tension emerges between system efficiency and reform quality. Figure 4 shows

alignment improving steadily after 1980, yet Figure 7 shows that several reforms between ERTA

1981 and TCJA 2017 were misaligned—pointing away from the optimum rather than toward it.

The resolution is that alignment tracks the corporate share of revenue, which declined due to a

combination of policy choices (rate cuts, depreciation allowances) and structural forces (deindus-

trialization, globalization, the rise of pass-through entities). The framework cannot disentangle

these channels, but the implication for fragility is the same: if the corporate share of revenue

rose—whether through policy or structural reversal—misalignment could reemerge.

Figure 8 illustrates the importance of the general equilibrium approach. Using own-base elas-

ticities from the partial equilibrium literature—𝜀𝐶𝐶 ∈ [0.08, 4.79] from Vergara and Swonder

(2025) and 𝜀𝐿𝐿 ∈ [0.12, 0.40] from Saez, Slemrod, and Giertz (2012)—with cross-base spillovers

9. This follows from work from Kennedy et al. (2023) showing that TCJA’s benefits accrued almost entirely to the

top 10% of earners.
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set to zero, alignment appears near-perfect throughout the postwar period. The intuition is

straightforward: with small own-elasticities and no spillovers, the revenue gradient 𝑟 𝑗 ≈ 𝐵 𝑗 is

approximately proportional to the welfare gradient 𝑔 𝑗 = 𝐵 𝑗 , so the two are mechanically aligned

regardless of the tax mix. The general equilibrium estimates reveal what PE misses: the corpo-

rate base is highly elastic to both taxes, and these elasticities enter the revenue gradient scaled

by corporate revenue. When corporate revenue was large, both the own-base response and the

cross-base spillover made corporate taxes appear expensive and personal taxes appear cheap in

revenue terms, pushing the revenue gradient away from the welfare gradient. This created the

severe early misalignment that PE cannot detect.

Figure 8: Partial vs. General Equilibrium Alignment

Note: Solid blue line shows cos𝜃 from general equilibrium estimates with cross-base spillovers. Dashed gray line

and shaded band show cos𝜃 using partial equilibrium own-elasticities from the literature with cross-elasticities set

to zero. The PE band spans all combinations of 𝜀𝐶𝐶 ∈ [0.08, 4.79] and 𝜀𝐿𝐿 ∈ [0.12, 0.40].

5.2 Robustness

The main results rely on present-value general equilibrium elasticities generated by a Bayesian

local projection using utilitarian welfare and a particular discount rate. How sensitive are the

findings to these choices?
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Discount rates. Present-value calculations require a discount factor, and higher discount rates

place more weight on near-term responses where estimation is precise. Figure E.2 varies 𝛽 from

0.97 to 1. The improvement in alignment is robust across this range: all specifications with 𝛽 ≤
0.99 show cos𝜃 rising from below 0.5 to nearly perfect alignment.

Estimation methods. The revenue gradient depends on impulse response estimates, which

differ across methods. Figure E.3 compares nine approaches. The local projection variants (BLP,

LP, SLP, and LP-BC) and the BVAR cluster tightly, all showing alignment rising to above 0.9 by

the 2010s. The SVAR variant is an outlier and show no apparent change from the postwar period

to the present, but instead are evidence of severe misalignment. Figure E.4 shows that the same

is largely true when including a linear trend.

Welfare weights. The welfare gradient depends on how society values different taxpayers.

Figure E.1 varies these weights. Results are almost entirely insensitive to 𝜔𝐶 , the weight on cor-

porate taxpayers—all specifications in the left panel nearly overlap. Results are more sensitive to

𝜔𝐿 , but the pattern holds for any 𝜔𝐿 ≥ 0.5. Only extreme assumptions—placing near-zero weight

on personal income taxpayers—yield meaningfully different results. The asymmetry reflects the

larger personal tax base: its welfare weight matters more for the gradient calculation.

Horizon length. The elasticities depend on the length of the horizon cumulated over time.

Figure E.5 shows that the upward trend in cos𝜃 is consistent across horizon lengths from 20 to

100 quarters under the baseline specification.

Alternative Cholesky Ordering. The proxy SVAR identifies both tax shocks simultaneously,

but recovering the individual structural shocks requires a Cholesky decomposition of the 2 × 2

covariance matrix of the proxy-identified block. The baseline identifies the corporate tax shock

using a decomposition that orders the corporate tax variable first, and identifies the personal

tax shock using a decomposition that orders the personal tax variable first. This imposes that

the shock ordered second has no contemporaneous effect on the tax variable ordered first. As a

robustness check, we reverse these orderings: the corporate shock is identified with the personal

tax variable ordered first, and vice versa. Similar results under both orderings indicate that the

contemporaneous correlation between the two tax shocks is small, so the identifying restriction

is not driving the results. The results in Appendix E.3 show that that, quantitatively, this ordering

is virtually irrelevant. This is unsurprising given previous results in the literature showing the

exact same outcome for a slightly different sample and specification (Mertens and Ravn 2013a).
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Seven-variable specification. The baseline uses four variables: tax rates and bases for both in-

struments. Appendix E shows robustness to a seven-variable specification that adds government

spending, GDP, and debt following Mertens and Ravn (2013a). The seven-variable specification

yields qualitatively similar point estimates but wider credible intervals, as expected given the ad-

ditional parameters. The alignment metrics are robust to this choice: cos𝜃 in the 2010s exceeds

0.8 under both specifications.

In sum, the central finding—that alignment improved from severely negative to near-optimal

over the postwar period—is robust to discount rates, estimation methods, welfare weights, and

horizon length.

6 Conclusion

This paper develops a geometric framework for evaluating tax reform in general equilibrium. The

angle between the welfare gradient and the revenue gradient measures alignment with the Ram-

sey optimum: when these vectors are collinear, no revenue-neutral reform can improve welfare;

when they are orthogonal, the system is maximally inefficient. Computing this angle requires

only two sufficient statistics, tax bases and the general equilibrium response of revenue to tax

changes, without specifying preferences, production, or market structure.

Applying this framework to the U.S. federal tax system from 1947 to 2019 reveals that align-

ment improved dramatically over the postwar period. In the early 1950s, welfare and revenue

gradients were nearly orthogonal, indicating severe misalignment: the tax system was as far

from optimal as possible without actively destroying welfare, and more than 90% of potential ef-

ficiency gains were available through revenue-neutral reform. By the 2010s, cos𝜃 exceeded 0.95

and the share of gains available revenue-neutrally (sin𝜃 ) had fallen below 5%. The system moved

from severe misalignment to near-optimality.

The U.S. income tax system has largely exhausted the efficiency gains available through revenue-

neutral reform along the corporate-personal margin. The framework points toward margins

outside the current analysis (consumption taxes, payroll taxes, wealth taxes) where cross-base

spillovers may create new misalignments. More broadly, the projection approach applies wher-

ever policymakers face multi-instrument reform problems with general equilibrium spillovers:

state and local taxation, environmental policy, or social insurance. The sufficient statistics it re-

quires, welfare costs and revenue responses, can be estimated from reduced-form evidence in any

of these settings.
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Online Appendix

A Proofs

A.1 MCPF Equalization

The government chooses 𝝉 to minimize social cost subject to a revenue requirement:

min

𝝉
𝑊 (𝝉 ) subject to 𝑅(𝝉 ) = 𝐺. (A.1)

Proposition 2 (Ramsey first-order condition). Suppose an interior optimum 𝝉∗ ∈ int(T ) exists
with 𝐵𝑘 (𝝉∗) > 0 and 𝑟𝑘 (𝝉∗) > 0 for all 𝑘 , and constraint qualification holds. Then there exists 𝜆 ∈ R

such that
𝑔(𝝉∗) = 𝜆 𝑟 (𝝉∗). (A.2)

Equivalently, marginal costs of public funds are equalized across instruments:

MCPF𝑖 (𝝉∗) :=
𝑔𝑖 (𝝉∗)
𝑟𝑖 (𝝉∗)

= 𝜆 for all 𝑖 . (A.3)

Proof. Form the Lagrangian L(𝝉 , 𝜆) =𝑊 (𝝉 ) − 𝜆(𝑅(𝝉 ) −𝐺). Interior first-order conditions give

∇𝝉L = 0, i.e., 𝑔(𝝉∗) = 𝜆 𝑟 (𝝉∗). Dividing componentwise by 𝑟𝑖 (𝝉∗) > 0 yields (A.3). □

A.2 Proof of Lemma 1

Proof. The problem is max𝑑𝝉 −𝑔⊤𝑑𝝉 subject to 𝑟⊤𝑑𝝉 = 0. Form the Lagrangian:

L(𝑑𝝉 , 𝜇) = −𝑔⊤𝑑𝝉 + 𝜇𝑟⊤𝑑𝝉 . (A.4)

First-order conditions yield −𝑔 + 𝜇𝑟 = 0. This cannot be satisfied for finite 𝜇 when MCPFs differ

(which would require 𝑔 = 𝜇𝑟 , i.e., 𝑔 parallel to 𝑟 ). The constraint 𝑟⊤𝑑𝝉 = 0 implies 𝑟⊤(−𝑔+𝜇𝑟 ) = 0,

giving:

𝜇 =
𝑟⊤𝑔

𝑟⊤𝑟
. (A.5)

Thus the optimal direction is:

𝑑𝝉∗ ∝ −
(
𝑔 − 𝑟

⊤𝑔

𝑟⊤𝑟
𝑟

)
= −𝑃⊥𝑟𝑔. (A.6)
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Normalizing to a reform of size 𝛼 (in percentage points) gives 𝑑𝝉∗ = −𝛼 𝑃⊥𝑟𝑔
∥𝑃⊥𝑟𝑔∥ . □

A.3 Interpreting the Alignment Metric

Table A.1: Interpreting the Alignment Metric

cos𝜃 𝜃 sin𝜃 Interpretation

1.00 0° 0.00 Ramsey optimum

0.87 30° 0.50 Near optimum; 50% of gains RN

0.50 60° 0.87 Moderate misalignment; 87% of gains RN

0.00 90° 1.00 Orthogonal; all gains RN

−0.50 120° 0.87 Negative alignment; 87% of gains RN

−0.87 150° 0.50 Severe misalignment; 50% of gains RN

−1.00 180° 0.00 Perfect anti-alignment

Note: Revenue-neutral potential sin𝜃 is maximized at 𝜃 = 90° and symmetric around it. For example, 𝜃 = 60° and

𝜃 = 120° both yield sin𝜃 ≈ 0.87 because the perpendicular component ∥𝑔∥ sin𝜃 has equal magnitude in both cases.

B Data

The variables and their construction are an extension of Mertens and Ravn (2013a) and Cloyne

et al. (2022) from 1947Q1-2019Q4:

• Personal IncomeTax Base. The personal income tax base is National Income and Product

Accounts (NIPA) personal income (Table 2.1 Line 1) plus contributions for government

social insurance (3.2 Line 11) less transfers (2.1 Line 17).

• Personal Income Tax Revenue. This comes from summing Table 3.2 Lines 3 and 11.

• Average Personal Income Tax Rate. The APITR is revenue divided by the lagged base.

• Corporate Income Tax Base. The corporate tax base is table 1.2 Line 13 (corporate profits

with inventory valuation and capital consumption adjustments) less Federal Reserve Bank

profits (Historical Tables 6.16 B-C-D).

• Corporate IncomeTaxRevenue. Corporate revenue is federal taxes on corporate income

excluding Federal Reserve banks (Table 3.2 Line 8).
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• Average Corporate Income Tax Rate. The ACITR is revenue divided by the lagged base.

• Government Spending. Real federal government consumption expenditures and gross

investment (1.1.3 Line 23).

• GDP. Real GDP is from NIPA Table 1.1.3 Line 1.

• Debt. Debt is spliced together using Federal debt held by the public from Favero and Gi-

avazzi (2012) and the series FYGFDPUN from FRED.

• Narrative Instruments. See Cloyne et al. (2022) for an extension to the Mertens and Ravn

(2013a) corporate and personal income tax shock series.

All series in levels are deflated by the GDP deflator (NIPA Table 1.1.9 Line 1) and population,

then log-transformed. Population is total population over age 16 from the Bureau of Labor Statis-

tics (CNP16OV in FRED). Because this series starts in 1948, we use a simple linear extrapolation

to extend back four quarters to 1947Q1.

C Estimation Details

This appendix provides details on the two-stage Bayesian local projection procedure used to es-

timate impulse response functions. Many of the estimation details follow Cloyne et al. (2022),

Appendix G.

C.1 Stage 1: Bayesian VAR with Hierarchical Priors

The first stage estimates a Bayesian VAR to obtain draws from the posterior distribution of the

impact matrix 𝐴0. The VAR is:

𝑍𝑡 = 𝑐 + 𝐵1𝑍𝑡−1 + · · · + 𝐵𝑝𝑍𝑡−𝑝 + 𝑢𝑡 , 𝑢𝑡 ∼ 𝑁 (0, Σ) (A.7)

where 𝑍𝑡 is the vector of endogenous variables and 𝑝 = 4 lags.

Priors. Following Giannone, Lenza, and Primiceri (2015), I treat the hyperparameters govern-

ing prior tightness as random and estimate them jointly with the VAR coefficients. The prior

combines three components:

• Minnesota prior : The prior mean for the coefficient on the first own lag is set to the AR(1)

coefficient from a preliminary regression; all other coefficients have prior mean zero. The
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prior variance for the coefficient on lag ℓ of variable 𝑗 in equation 𝑖 is:

𝑉𝑖 𝑗ℓ =
𝜆2

ℓ2
·
𝑠2

𝑖

𝑠2

𝑗

(A.8)

where 𝑠𝑖 and 𝑠 𝑗 are residual standard deviations from preliminary AR(1) regressions and 𝜆

controls overall tightness. The prior on 𝜆 is 𝜆 ∼ 𝑁 +(0.2, 0.42) truncated to [10
−4, 5].

• Sum-of-coefficients prior : This prior, introduced by Doan, Litterman, and Sims (1984), shrinks

the sum of lag coefficients toward unity for persistent variables, helping capture unit root

behavior.

• Single-unit-root prior : This prior implements the dummy initial observation approach of

Sims (1993), providing additional shrinkage toward a random walk.

The hyperparameters governing the sum-of-coefficients and single-unit-root priors are also

treated as random, with priors Γ(1, 1) truncated to [10
−4, 50].

Posterior simulation. The posterior is approximated via Markov chain Monte Carlo. Con-

ditional on hyperparameters, the posterior for VAR coefficients and the covariance matrix Σ is

Normal-inverse-Wishart and can be sampled directly. The hyperparameters are updated using a

Metropolis-Hastings step. I use 20,000 iterations with 10,000 discarded as burn-in.

C.2 Stage 1b: Proxy Identification of 𝐴0

For each draw of the VAR coefficients and covariance matrix from the Stage 1 posterior, I apply

the proxy identification procedure of Mertens and Ravn (2013a) to obtain a draw of the impact

matrix 𝐴0.

Let 𝑢𝑡 = 𝐴0𝜀𝑡 where 𝜀𝑡 contains the structural shocks with Var(𝜀𝑡 ) = 𝐼 . Partition the variables

so that the first 𝑘 correspond to the tax rates (instrumented by the narrative measures 𝑚𝑡 ) and

the remaining 𝑛 − 𝑘 are non-tax variables. The reduced-form covariance matrix Σ = 𝐴0𝐴
′
0

can be

partitioned conformably:

Σ =
©­«
Σ11 Σ12

Σ21 Σ22

ª®¬ (A.9)

The proxy relevance condition 𝐸 [𝑚𝑡𝜀
′
1,𝑡 ] = Φ ≠ 0 and exogeneity condition 𝐸 [𝑚𝑡𝜀

′
2,𝑡 ] = 0

identify the subspace spanned by the tax shocks. Regressing the non-tax residuals on the tax

residuals, using the proxies as instruments, recovers the ratio 𝛽21𝛽
−1

11
. The remaining elements of

𝐴0 corresponding to the tax shocks follow from the algebra in Mertens and Ravn (2013a).
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To separate the personal and corporate tax shocks within the identified subspace, I apply a

Cholesky factorization. When estimating the impulse response to shock 𝑗 , I order tax 𝑗 last. This

imposes that shock 𝑗 has no direct contemporaneous effect on the other tax rate.

Each draw of 𝐴0 is normalized so that the impact effect on the relevant tax rate equals −1

percentage point (a tax cut).

C.3 Stage 2: Bayesian Local Projections

The second stage estimates local projections at each horizon ℎ ≥ 1. For outcome variable 𝑦 (e.g.,

a tax rate or log tax base), the local projection is:

𝑦𝑡+ℎ = 𝑐
(ℎ) + 𝐵 (ℎ)

1
𝑍𝑡−1 +

𝑝∑︁
ℓ=2

𝑏
(ℎ)
ℓ
𝑍𝑡−ℓ + 𝑢𝑡+ℎ (A.10)

where 𝑝 = 4 lags. Let 𝜔 (ℎ)
collect the coefficients and let 𝑋𝑡 = (𝑍 ′

𝑡−1
, . . . , 𝑍 ′

𝑡−𝑝, 1)′ denote the

regressors.

Priors. The prior for𝜔 (ℎ)
is Normal with mean𝜔0 and variance 𝑆0. The prior mean implies that

the outcome variable follows an AR(1) process: the element corresponding to the first own lag

equals the AR(1) coefficient from a preliminary regression, with all other elements set to zero.

The prior variance takes the Minnesota form:

𝑆0, 𝑗 ℓ =
𝜆2

ℓ2
·
𝑠2

𝑦

𝑠2

𝑗

(A.11)

where 𝑠𝑦 is the standard deviation of the outcome and 𝑠 𝑗 is the standard deviation of regressor 𝑗 .

The tightness parameter is 𝜆 = 10, reflecting weak prior information. The prior variance on the

intercept is 100.

Non-Gaussian errors. As discussed in Jorda (2005), local projection residuals are generally

heteroskedastic when ℎ > 0. To accommodate this, I model the errors as a scale mixture of

normals. Specifically:

𝑢𝑡+ℎ |𝜙𝑡 ∼ 𝑁 (0, 𝜎2/𝜙𝑡 ), 𝜙𝑡 ∼ Γ(𝜈/2, 𝜈/2) (A.12)

Integrating out the mixing variable 𝜙𝑡 yields a Student-t distribution for 𝑢𝑡+ℎ with 𝜈 degrees of

freedom (Geweke 1993). This formulation accommodates heteroskedasticity of unknown form

without imposing a specific structure.
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The degrees of freedom 𝜈 receives an exponential prior:

𝑝 (𝜈) ∝ exp(−𝜈/𝜈0) (A.13)

with 𝜈0 = 10. Small values of 𝜈 allow heavy tails; the prior places mass on moderate tail thickness

while permitting approximate normality.

Posterior simulation. I approximate the posterior using Gibbs sampling with a Metropolis-

Hastings step for 𝜈 . The sampler iterates over the following blocks, conditioning on all other

parameters:

1. Mixing weights 𝜙𝑡 : Given the current residuals and 𝜈 , each 𝜙𝑡 is drawn independently from

a Gamma distribution with shape (𝜈 + 1)/2 and rate (𝑢2

𝑡+ℎ/𝜎
2 + 𝜈)/2.

2. Degrees of freedom 𝜈 : The conditional posterior is nonstandard. I update 𝜈 via random walk

Metropolis-Hastings, proposing 𝜈′ = 𝜈 + 𝜂 where 𝜂 ∼ 𝑁 (0, 𝑐). The proposal is accepted

with the usual Metropolis probability. The step size 𝑐 is tuned to achieve an acceptance rate

between 30% and 50%.

3. Error variance 𝜎2
: Defining transformed residuals 𝑢̃𝑡+ℎ = 𝑢𝑡+ℎ

√︁
𝜙𝑡 , the conditional posterior

for 𝜎2
is inverse Gamma with shape 𝑇 /2 and scale

∑
𝑡 𝑢̃

2

𝑡+ℎ/2.

4. Coefficients 𝜔 (ℎ)
: Applying the same transformation to the dependent variable and regres-

sors, 𝑦𝑡+ℎ = 𝑦𝑡+ℎ
√︁
𝜙𝑡 and 𝑋̃𝑡 = 𝑋𝑡

√︁
𝜙𝑡 , yields a standard conjugate updating formula. The

conditional posterior is Normal with variance

𝑉 =

(
𝑆−1

0
+ 𝜎−2𝑋̃ ′𝑋̃

)−1

(A.14)

and mean

𝜔̄ = 𝑉

(
𝑆−1

0
𝜔0 + 𝜎−2𝑋̃ ′𝑦

)
(A.15)

I run 12,000 iterations, discarding the first 3,000 as burn-in and retaining every third draw,

yielding 3,000 posterior draws for inference.

Impulse response construction. At horizon ℎ = 0, the impulse response equals the 𝐴0 draw

from Stage 1b. At horizons ℎ ≥ 1, the impulse response is constructed following Jorda (2005):

𝐼𝑅𝐹ℎ = 𝐵
(ℎ−1)
1

𝐴0 (A.16)
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where 𝐵
(ℎ)
1

contains the coefficients on 𝑍𝑡−1 from the horizon-ℎ local projection. For each pos-

terior draw, I pair the 𝐴0 draw from Stage 1 with the 𝐵
(ℎ)
1

draw from Stage 2, ensuring that un-

certainty in the impact matrix propagates through to longer horizons. By construction, at ℎ = 0,

𝐼𝑅𝐹0 = 𝐴0.

Revenue gradients. As discussed in Section 4, the present-value revenue gradient is con-

structed from the impulse responses of retention rates and tax bases. For tax instrument 𝑗 , equa-

tion (21) gives:

𝑟𝑃𝑉𝑗 = 𝐵 𝑗,0 · 𝐴 ·
[
1 −

𝜏 𝑗

1 − 𝜏 𝑗
𝜀 𝑗 𝑗 −

𝜏𝑘

1 − 𝜏 𝑗
𝐵𝑘

𝐵 𝑗
𝜀𝑘 𝑗

]
, (A.17)

where 𝐴 =
∑𝐻
ℎ=0

𝛽ℎ is the annuity factor. Since the elasticities 𝜀𝑖 𝑗 are permanent-equivalent (cu-

mulative base responses divided by the cumulative retention rate response 𝜅 𝑗 ), the revenue gra-

dient uses the common annuity factor rather than instrument-specific persistence. This ensures

that 𝑔𝑃𝑉 and 𝑟𝑃𝑉 correspond to the same policy experiment: a permanent marginal reform. This

calculation is performed for each posterior draw, yielding a posterior distribution for the revenue

gradient.

D Additional Alignment Results

Figure D.1: The Marginal Cost of Public Funds

Note: This figure plots the marginal cost of public funds for corporate and personal income taxes. Following Finkel-

stein and Hendren (2020), I denote the MCPF as infinite if it is on the wrong side of the Laffer curve.
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Figure D.2: The Evolution of Tax System Efficiency

Note: sin𝜃 is the share of welfare gains available from revenue-neutral reform. Shaded regions show 90% credible

intervals.

E Four-Variable System Robustness
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E.1 Robustness of Alignment Statistics

Figure E.1: Robustness Across Welfare Weights

Note: Each panel varies one welfare weight while holding the other at 1. Left panel varies 𝜔𝐶 (weight on corporate

taxpayers) with 𝜔𝐿 = 1; right panel varies 𝜔𝐿 (weight on personal taxpayers) with 𝜔𝐶 = 1. The utilitarian baseline

has 𝜔𝐶 = 𝜔𝐿 = 1.
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Figure E.2: Robustness Across Discount Factors

Note: This figure plots alignment cos𝜃 across different discount rate regimes. Under the baseline, 𝛽 = 0.9926.

Figure E.3: Robustness Across Estimation Methodologies

Note: This figure plots alignment cos𝜃 across estimation methodologies.
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Figure E.4: Robustness with Linear Trend

Note: This figure plots alignment cos𝜃 across estimation methodologies and adds a linear trend. I do not include

the BVAR because it takes care of trends by construction.

Figure E.5: Robustness Across Horizon Specifications

Note: This figure plots alignment cos𝜃 for select models in which vary the horizon length, holding fixed 𝛽 = 0.9926.
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E.2 Underlying Elasticities and CIRFs

This appendix shows robustness for the own and cross-revenue effects of corporate and personal

income tax shocks. Table E.1 in the main text shows the present value of each, while this Appendix

shows the IRFs that generate the present value results. All specifications use the same set of

variables. The results are consistent across local projections specifications but somewhat noisier

with the VAR specifications.

Local projections. This variant uses standard local projections with the Mertens-Ravn struc-

tural shocks as instruments. Again, the results are similar, though somewhat smaller. I propagate

uncertainty about 𝐴0 using the wild bootstrap proxy SVAR.

Smooth LP. Because the local projections results are lumpy, I show another variant which

penalizes deviations across horizons using Barnichon and Brownlees (2019) in Figure E.8.

Bias-Corrected LP. Figure E.9 shows the bias-corrected discounted cumulative IRF from Herbst

and Johannsen (2024).

Bayesian VAR. The main results come from a Bayesian local projection with the instruments

generated from a Bayesian VAR with four lags (selected by the BIC). Figure E.10 shows the impulse

responses generated by the Bayesian VAR along with 68% and 90% credible intervals. The IRFs

are qualitatively similar, though noticeably larger than the baseline BLP.

Proxy SVAR. Figure E.11 shows the impulse responses generated by corporate and personal

income tax shocks in a frequentist structural vector autoregression. The specification is the exact

same as in the baseline Mertens and Ravn (2013b); it is just extended to 2019Q4. Following their

lead, I employ a wild bootstrap. The results are more precise but otherwise qualitatively and

quantitatively quite similar to the baseline.

Linear Trends. Figures E.12-E.16 repeat the above specifications but add linear trends.
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Figure E.6: Dynamic Effects of Corporate and Personal Income Tax Cuts on Tax Rates and Bases

Note: Discounted cumulative impulse responses (𝛽 = 0.9926) to a unit increase in the log retention rate log(1 − 𝜏).
Sample: 1947Q1–2019Q4. Posterior medians with 68% and 90% credible intervals.
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Figure E.7: Dynamic Effects of Narrative Tax Shocks on Revenue (LP)

Note: Dynamic effects of a unit increase in each instrument’s average log retention rate from 1947Q1-2019Q4. The

response is a discounted cumulative IRF with 𝛽 = 0.9926.
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Figure E.8: Dynamic Effects of Narrative Tax Shocks on Revenue (Smooth LP)

Note: Dynamic effects of a unit increase in each instrument’s average log retention rate from 1947Q1-2019Q4. The

response is a discounted cumulative IRF with 𝛽 = 0.9926.
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Figure E.9: Dynamic Effects of Narrative Tax Shocks on Revenue (Bias-Corrected LP)

Note: Dynamic effects of a unit increase in each instrument’s average log retention rate from 1947Q1-2019Q4. The

response is a discounted cumulative IRF with 𝛽 = 0.9926.
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Figure E.10: Dynamic Effects of Narrative Tax Shocks on Revenue (Bayesian VAR)

Note: Dynamic effects of a unit increase in each instrument’s average log retention rate from 1947Q1-2019Q4. The

response is a discounted cumulative IRF with 𝛽 = 0.9926.
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Figure E.11: Dynamic Effects of Narrative Tax Shocks on Revenue (Proxy SVAR)

Note: Dynamic effects of a unit increase in each instrument’s average log retention rate from 1947Q1-2019Q4. The

response is a discounted cumulative IRF with 𝛽 = 0.9926.
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Figure E.12: Dynamic Effects of Corporate and Personal Income Tax Cuts on Tax Rates and

Bases (BLP with Linear Trend)

Note: Discounted cumulative impulse responses (𝛽 = 0.9926) to a unit increase in the log retention rate log(1 − 𝜏).
Sample: 1947Q1–2019Q4. Posterior medians with 68% and 90% credible intervals. This specification has a linear

trend.
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Figure E.13: Dynamic Effects of Narrative Tax Shocks on Revenue (LP with Linear Trend)

Note: Dynamic effects of a unit increase in each instrument’s average log retention rate from 1947Q1-2019Q4. The

response is a discounted cumulative IRF with 𝛽 = 0.9926. This specification has a linear trend.
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Figure E.14: Dynamic Effects of Narrative Tax Shocks on Revenue (Smooth LP with Linear

Trend)

Note: Dynamic effects of a unit increase in each instrument’s average log retention rate from 1947Q1-2019Q4. The

response is a discounted cumulative IRF with 𝛽 = 0.9926. This specification has a linear trend.
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Figure E.15: Dynamic Effects of Narrative Tax Shocks on Revenue (Bias-Corrected LP with

Linear Trend)

Note: Dynamic effects of a unit increase in each instrument’s average log retention rate from 1947Q1-2019Q4. The

response is a discounted cumulative IRF with 𝛽 = 0.9926. This specification has a linear trend.
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Figure E.16: Dynamic Effects of Narrative Tax Shocks on Revenue (Proxy SVAR with Linear

Trend)

Note: Dynamic effects of a unit increase in each instrument’s average log retention rate from 1947Q1-2019Q4. The

response is a discounted cumulative IRF with 𝛽 = 0.9926. This specification has a linear trend.
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Table E.1: Present Value Elasticities of Tax Bases with Respect to Retention Rates (Four Variable

System)

Corporate Tax Shock Personal Tax Shock

Method 𝜀𝐶𝐶 𝜀𝐿𝐶 𝜀𝐶𝐿 𝜀𝐿𝐿

BLP 8.47 -0.34 20.88 1.52

(5.85, 13.54) (-0.83, 0.07) (14.53, 29.60) (0.39, 2.65)

LP 13.80 -0.14 30.11 1.43

(8.51, 28.17) (-1.45, 1.07) (18.84, 57.05) (-0.65, 3.86)

SLP 13.88 -0.15 30.06 1.43

(8.53, 28.03) (-1.47, 1.05) (18.79, 57.63) (-0.68, 3.86)

LP-BC 13.16 -0.19 28.52 1.34

(8.14, 26.10) (-1.42, 0.95) (17.97, 53.30) (-0.66, 3.65)

BVAR 6.18 -0.60 19.42 2.94

(3.66, 11.23) (-1.05, -0.27) (8.30, 37.45) (0.68, 7.11)

SVAR-IV 12.54 -0.16 38.27 3.50

(-58.70, 85.52) (-5.49, 4.66) (16.75, 122.56) (-1.34, 18.70)

With Linear Trend

BLP 9.44 -0.96 19.73 1.24

(5.64, 18.78) (-1.88, -0.43) (14.16, 27.64) (0.08, 2.35)

LP 18.18 -0.90 27.04 1.27

(8.73, 69.03) (-4.00, 1.30) (16.11, 48.39) (-0.85, 3.85)

SLP 18.29 -0.90 26.99 1.26

(8.72, 69.60) (-4.01, 1.32) (16.01, 48.75) (-0.85, 3.86)

LP-BC 16.89 -0.86 25.65 1.22

(8.39, 59.63) (-3.36, 1.05) (15.41, 45.26) (-0.81, 3.68)

SVAR-IV 10.48 -0.72 30.34 2.55

(-110.86, 152.72) (-12.73, 9.28) (10.45, 109.97) (-2.27, 18.84)

Note: Each elasticity 𝜀𝑖 𝑗 measures the percent change in base 𝑖 per one percent increase in retention rate (1 −
𝜏 𝑗 ). Bayesian specifications have 90% credible intervals in parentheses, while frequentist ones are 90% confidence

intervals. This table reports elasticities for the four-variable system comprised solely of tax bases and rates.
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E.3 Re-ordering the Shocks

Separating the two structural tax shocks from the proxy-identified block requires a Cholesky de-

composition of the 2×2 residual covariance matrix. In the baseline specification, when estimating

the corporate tax shock we place the corporate tax rate first in the ordering, and when estimat-

ing the personal tax shock we place the personal tax rate first. The variable ordered second is

restricted to have no contemporaneous response to the other shock.

Here we reverse both orderings. The stability of the impulse responses across specifications

suggests that the two shocks exhibit minimal contemporaneous correlation, and hence the trian-

gularization assumption plays little role in shaping our conclusions.

Table E.2: Present Value Elasticities of Tax Bases with Respect to Retention Rates (Alternative

Ordering)

Corporate Tax Shock Personal Tax Shock

Method 𝜀𝐶𝐶 𝜀𝐿𝐶 𝜀𝐶𝐿 𝜀𝐿𝐿

BLP 6.53 -0.35 19.46 1.63

(2.83, 12.17) (-0.73, 0.01) (15.65, 24.23) (0.61, 2.82)

LP 13.77 -0.13 30.33 1.43

(8.55, 28.91) (-1.44, 1.01) (18.76, 55.91) (-0.72, 3.84)

SLP 13.80 -0.13 30.28 1.43

(8.58, 28.87) (-1.46, 1.02) (18.69, 55.94) (-0.73, 3.83)

LP-BC 13.07 -0.17 28.60 1.35

(8.21, 26.99) (-1.41, 0.91) (17.90, 51.93) (-0.72, 3.59)

BVAR 5.15 -0.62 17.42 3.08

(2.52, 11.06) (-1.05, -0.30) (8.26, 31.87) (0.73, 7.31)

SVAR-IV 6.58 -0.54 31.11 4.44

(-3.60, 33.74) (-3.72, 1.29) (15.37, 80.56) (0.10, 20.06)

Note: Each elasticity 𝜀𝑖 𝑗 measures the percent change in base 𝑖 per one percent increase in retention rate (1 −
𝜏 𝑗 ). Bayesian specifications have 90% credible intervals in parentheses, while frequentist ones are 90% confidence

intervals. This table reports elasticities for the four-variable system comprised solely of tax bases and rates, but with

the ordering of the shocks reversed.
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Figure E.17: The Evolution of Tax System Efficiency (Alternative Ordering)

Note: Left panel plots cos𝜃 , the alignment between welfare and revenue gradients; cos𝜃 = 1 indicates the Ramsey

optimum. Right panel plots sin
2 𝜃 , the share of potential welfare gains available through revenue-neutral reform.

Shaded regions show 90% credible intervals. This figure alters the ordering of the shocks for the Bayesian LP.

Figure E.18: Robustness Across Estimation Methodologies (Alternative Ordering)

Note: This figure plots alignment cos𝜃 across estimation methodologies while switching the order of the shocks.
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F Seven-Variable System Robustness

The baseline specification uses four variables: personal and corporate tax rates and their cor-

responding bases. This appendix explains why the four-variable specification is appropriate for

estimating revenue gradients, and shows robustness to a seven-variable specification that adds

output, government spending, and debt.

The revenue gradient in the projection framework is the total derivative of present-value

revenue with respect to the tax rate:

𝑟 𝑗 =
𝜕

𝜕𝜏 𝑗
E0

∞∑︁
𝑡=0

𝛽𝑡𝑅𝑡 ,

where 𝑅𝑡 = 𝜏𝐿𝐵𝐿 + 𝜏𝐶𝐵𝐶 is total income tax revenue. The key object is
𝜕𝐵𝑘
𝜕𝜏 𝑗

, the total derivative

of base 𝑘 with respect to tax rate 𝑗 . This total derivative includes all channels through which

a tax change affects the base: direct behavioral responses, income shifting between bases, and

general equilibrium effects through output, investment, and employment. The theory does not

ask for
𝜕𝐵𝑘
𝜕𝜏 𝑗

��
𝑌

, the partial derivative holding output constant. It asks for the full response that a

policymaker would observe if they changed the tax rate.

The four-variable specification delivers this total derivative. When we estimate the impulse

response of the corporate base to a personal tax shock, the response captures all channels, includ-

ing any effects operating through GDP. We are not conditioning on GDP, so the full reduced-form

relationship between tax shocks and bases is preserved.

A seven-variable specification that includes GDP, government spending, and debt estimates

a different object. By including lagged GDP as a regressor in the local projection, we ask: what

is the effect of a tax shock on the corporate base, controlling for GDP? This partials out GDP-

mediated effects. If a personal tax cut raises GDP, and higher GDP raises corporate profits, then

including GDP in the system absorbs some of the variation we want to attribute to the tax shock.

The resulting elasticity is a conditional object that understates the total revenue response.

One might worry that omitting GDP leaves the tax shock correlated with other structural

disturbances, biasing the estimates. But narrative identification does not require controlling for

other variables. The Mertens-Ravn proxy SVAR achieves identification through moment condi-

tions requiring that the narrative instruments correlate with structural tax shocks and are uncor-

related with other structural shocks. These conditions are satisfied by construction: Romer and

Romer (2010) selected tax changes legislated for reasons unrelated to current economic condi-

tions. This selection is what ensures exogeneity, not the inclusion of control variables. Adding

variables to the VAR does not improve identification; it changes what object is being estimated.
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Mertens and Ravn (2013a) included output, government spending, and debt because they were

interested in output multipliers and fiscal sustainability. For their research question, the seven-

variable specification was appropriate. For the present question—what are the revenue effects of

tax changes for evaluating Ramsey alignment?—the total elasticity is required, and the additional

variables are unnecessary.

Table F.1 reports elasticities from both specifications. The seven-variable specification yields

qualitatively similar point estimates but wider credible intervals, as expected given the addi-

tional parameters. The alignment metrics are robust to this choice: cos𝜃 in the 2010s exceeds 0.8

under both specifications. The four-variable specification is the appropriate baseline because it

estimates the object the theory requires; the seven-variable specification serves as a robustness

check demonstrating that results are not sensitive to the conditioning set.

F.1 Robustness of Alignment Statistics

Figure F.1: Robustness Across Welfare Weights

Note: Each panel varies one welfare weight while holding the other at 1. Left panel varies 𝜔𝐶 (weight on corporate

taxpayers) with 𝜔𝐿 = 1; right panel varies 𝜔𝐿 (weight on personal taxpayers) with 𝜔𝐶 = 1. The utilitarian baseline

has 𝜔𝐶 = 𝜔𝐿 = 1. Each line corresponds to an estimate with the seven-variable system.
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Figure F.2: Robustness Across Discount Factors

Note: This figure plots alignment cos𝜃 across different discount rate regimes for the seven-variable system. Under

the baseline, 𝛽 = 0.9926.
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Figure F.3: Robustness Across Estimation Methodologies

Note: This figure plots alignment cos𝜃 across estimation methodologies for the seven-variable system. See Ap-

pendix E for further estimation details.
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Figure F.4: Robustness Across Horizon Specifications

Note: This figure plots alignment cos𝜃 for select models in which vary the horizon length, holding fixed 𝛽 = 0.9926.

This is for the seven-variable system.
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Figure F.5: Dynamic Effects of Corporate and Personal Income Tax Cuts on Tax Rates and Bases

Note: Discounted cumulative impulse responses (𝛽 = 0.9926) to a unit increase in the log retention rate log(1 − 𝜏).
Sample: 1947Q1–2019Q4. Posterior medians with 68% and 90% credible intervals.
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F.2 Underlying Elasticities and CIRFs

Figure F.6: Dynamic Effects of Narrative Tax Shocks on Revenue (LP)

Note: Dynamic effects of a unit increase in each instrument’s average log retention rate from 1947Q1-2019Q4. The

response is a discounted cumulative IRF with 𝛽 = 0.9926.
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Figure F.7: Dynamic Effects of Narrative Tax Shocks on Revenue (Smooth LP)

Note: Dynamic effects of a unit increase in each instrument’s average log retention rate from 1947Q1-2019Q4. The

response is a discounted cumulative IRF with 𝛽 = 0.9926.
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Figure F.8: Dynamic Effects of Narrative Tax Shocks on Revenue (Bias-Corrected LP)

Note: Dynamic effects of a unit increase in each instrument’s average log retention rate from 1947Q1-2019Q4. The

response is a discounted cumulative IRF with 𝛽 = 0.9926.
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Figure F.9: Dynamic Effects of Narrative Tax Shocks on Revenue (Bayesian VAR)

Note: Dynamic effects of a unit increase in each instrument’s average log retention rate from 1947Q1-2019Q4. The

response is a discounted cumulative IRF with 𝛽 = 0.9926.
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Figure F.10: Dynamic Effects of Narrative Tax Shocks on Revenue (Proxy SVAR)

Note: Dynamic effects of a unit increase in each instrument’s average log retention rate from 1947Q1-2019Q4. The

response is a discounted cumulative IRF with 𝛽 = 0.9926.
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Table F.1: Present Value Elasticities of Tax Bases with Respect to Retention Rates (Seven

Variable System)

Corporate Tax Shock Personal Tax Shock

Method 𝜀𝐶𝐶 𝜀𝐿𝐶 𝜀𝐶𝐿 𝜀𝐿𝐿

BLP 4.63 0.42 24.94 1.57

(3.03, 7.21) (0.02, 0.97) (13.52, 59.06) (-0.57, 6.65)

LP 7.96 1.09 22.41 1.58

(5.12, 12.96) (0.39, 2.13) (5.88, 76.29) (-1.29, 10.01)

SLP 7.99 1.09 22.32 1.55

(5.14, 12.96) (0.39, 2.13) (5.80, 76.83) (-1.28, 10.04)

LP-BC 7.94 1.00 21.18 1.52

(5.19, 12.82) (0.34, 2.01) (5.58, 67.70) (-1.11, 8.39)

BVAR 8.41 0.04 18.47 3.61

(4.06, 31.51) (-0.83, 1.65) (6.62, 55.55) (0.89, 11.09)

SVAR-IV 9.23 1.35 34.56 5.92

(3.37, 37.65) (-0.20, 6.40) (-87.70, 214.00) (-24.88, 48.88)

Note: Each elasticity 𝜀𝑖 𝑗 measures the percent change in base 𝑖 per one percent increase in retention rate (1 −
𝜏 𝑗 ). Bayesian specifications have 90% credible intervals in parentheses, while frequentist ones are 90% confidence

intervals. This table reports elasticities for the seven-variable system, which adds government spending, debt, and

GDP to the four-variable system.

G Evaluating Deficit-Financed Reforms

This appendix extends the projection framework to evaluate deficit-financed reforms when the

repayment rule is partially identified. The approach parallels the classic results in Appendix H: we

show that optimal debt policy emerges as a special case of the intertemporal projection problem

from Section 3.1, and develop bounds when the repayment path is uncertain.

Debt as Intertemporal Tax Reallocation

The transversality condition from equation (19) reveals that debt financing is equivalent to an in-

tertemporal reallocation of the tax burden. From the perspective of the sequence-space Jacobian
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introduced in Section 3.1, issuing debt at 𝑡 = 0 creates lower-diagonal entries: future revenue must

rise to service the debt. If agents are forward-looking and anticipate the future tax increases re-

quired for repayment, this also generates upper-diagonal feedbacks, as current behavior responds

to expected future policy. The present-value revenue gradient 𝑟PV

𝑑
in equation (15) aggregates

these intertemporal spillovers, exactly as the dynamic tax gradients aggregate spillovers across

instruments and time. This connection clarifies that debt is not a distinct financing instrument

but rather a repackaging of future tax obligations.

The welfare consequences of this deferral depend on whether the marginal cost of public

funds differs across time. If current taxes are highly distortionary while future taxes are less

distortionary, deferring taxation via debt improves welfare by economizing on distortions. Con-

versely, if future taxes are more distortionary than current taxes, deferring taxation reduces wel-

fare. The optimal financing mix should equalize the welfare cost per dollar of financing across all

margins—both across instruments and across time.

The dynamic Ramsey problem with transversality. Imposing the transversality condition,

the government chooses the tax path {𝜏𝜏𝜏𝑡 }∞𝑡=0
to maximize:

max

{𝜏𝜏𝜏𝑡 }

∞∑︁
𝑡=0

𝛽𝑡𝑊𝑡 (𝜏𝜏𝜏𝑡 ) subject to

∞∑︁
𝑡=0

𝛾 𝑡𝑅𝑡 (𝜏𝜏𝜏𝑡 ) =
∞∑︁
𝑡=0

𝛾 𝑡𝐺𝑡 + 𝐷0, (A.18)

where 𝛽 = (1 + 𝜌)−1
is the social discount factor. The debt path {𝐷𝑡 } is residual, determined by

the budget identity 𝐷𝑡 = 𝐷𝑡−1(1 + 𝑟debt) +𝐺𝑡 −𝑅𝑡 . Debt is not a choice variable; the transversality

condition eliminates it as a degree of freedom. The only choice is the tax path.

The Lagrangian is:

L =

∞∑︁
𝑡=0

𝛽𝑡𝑊𝑡 (𝜏𝜏𝜏𝑡 ) − 𝜆
[ ∞∑︁
𝑡=0

𝛾 𝑡𝑅𝑡 (𝜏𝜏𝜏𝑡 ) −𝐶
]
, (A.19)

where 𝜆 is the multiplier on the intertemporal budget constraint and 𝐶 =
∑
𝑡 𝛾

𝑡𝐺𝑡 + 𝐷0 is the

right-hand side. The first-order condition for 𝜏𝑖,𝑡 is:

𝛽𝑡
𝜕𝑊𝑡

𝜕𝜏𝑖,𝑡
= 𝜆𝛾 𝑡

𝜕𝑅𝑡

𝜕𝜏𝑖,𝑡
. (A.20)

Rearranging:

MCPF𝑖,𝑡 = 𝜆

(
1 + 𝜌

1 + 𝑟debt

)𝑡
(A.21)

At the Ramsey optimum, MCPFs must be equalized after adjusting for the wedge between

the social discount rate and the government’s borrowing rate. When 𝑟debt = 𝜌 , MCPFs should

be constant across time—this recovers the tax smoothing result derived in Appendix H.2. When
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𝑟debt ≠ 𝜌 , optimal MCPFs tilt over time. If 𝑟debt < 𝜌 (as in recent decades), the fiscal constraint

underweights future costs relative to social welfare. MCPFs should fall over time at rate (1 +
𝜌)/(1 + 𝑟debt) > 1, favoring back-loaded taxation.

Dual discounting and the projection formula. For local reforms around baseline𝜏𝜏𝜏 = (𝜏1,0, . . . , 𝜏𝑛,𝑇 ),
the optimal direction satisfies:

𝑑𝜏𝜏𝜏∗ = −𝑃⊥𝑟PV𝑔PV, (A.22)

where 𝑔PV = (𝛽0𝑔0, 𝛽
1𝑔1, . . . , 𝛽

𝑇𝑔𝑇 ) stacks welfare gradients with social discounting and 𝑟PV =

(𝛾0𝑟0, 𝛾
1𝑟1, . . . , 𝛾

𝑇𝑟𝑇 ) stacks revenue gradients with fiscal discounting. The projection operator

𝑃⊥𝑟PV = 𝐼 − 𝑟PV(𝑟PV⊤𝑟PV)−1𝑟PV⊤
enforces the fiscal constraint: reforms must satisfy (𝑟PV)⊤𝑑𝜏𝜏𝜏 = 0

in present value, discounted at the government’s borrowing rate.

The projection formula from Section 2.2 carries over with one critical modification: the rev-

enue gradient must be discounted at𝛾 , not 𝛽 . The welfare gradient uses social discounting because

we evaluate welfare from society’s perspective; the revenue constraint uses fiscal discounting be-

cause the government’s ability to borrow and repay is determined by market interest rates, not so-

cial preferences. When 𝑟debt = 𝜌 , the two coincide and the formula simplifies to 𝑑𝜏𝜏𝜏∗ = −𝑃⊥𝑟PV𝑔PV

from Section 3.1. When they diverge, the dual-discounting structure in equation (A.22) is re-

quired.

This formulation does not treat debt as a separate policy instrument. There is no “MCPF of

debt” in the sense of a standalone financing margin. Debt is the residual determined by the tax

path. The question “should we issue more debt?” is equivalent to “should we lower taxes today

and raise them tomorrow?” The answer depends on the relative MCPFs across time, adjusted for

the interest rate wedge in equation (A.21).

Evaluating Incomplete Reforms

The projection formula delivers the globally optimal tax path {𝜏𝜏𝜏∗𝑡 } satisfying the intertemporal

budget constraint. In practice, we rarely observe complete reform paths. The Tax Cuts and Jobs

Act specified tax changes at 𝑡 = 0—corporate rate cuts of 14 percentage points and personal rate

cuts of 2.6 percentage points—but left the future adjustment path implicit. The deficit created by

these cuts must eventually be closed, but the timing and composition of that closure are uncertain.

Evaluating such incomplete reforms requires comparing them to feasible alternatives.

The comparison. Consider two reform paths:

Reform A (deficit-financed, as implemented): At 𝑡 = 0, cut taxes by 𝑑𝜏𝜏𝜏𝐴
0
= (Δ𝜏𝐶,Δ𝜏𝐿), creating

a revenue loss. In future periods, raise taxes to satisfy the transversality condition.
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Reform B (revenue-neutral counterfactual): At 𝑡 = 0, cut taxes by 𝑑𝜏𝜏𝜏𝐵
0
= (Δ𝜏𝐶,Δ𝜏𝐿 + offset),

where the offset is chosen to satisfy 𝑟⊤
0
𝑑𝜏𝜏𝜏𝐵

0
= 0. No future adjustment is needed.

The welfare comparison reduces to: which path has lower present-value cost? Reform A pro-

vides larger immediate tax relief but requires costly future repayment. Reform B provides smaller

immediate relief but avoids future distortions. The trade-off depends on the relative MCPFs: if

current taxes are highly distortionary and future taxes are cheap, Reform A dominates. If the

reverse holds, Reform B dominates.

The repayment problem. Reform A creates a fiscal gap. The present-value revenue loss (dis-

counted at the fiscal rate 𝛾 ) is:

Δ𝑅PV =

𝐻∑︁
ℎ=0

𝛾ℎ
[
𝑟𝐶,ℎΔ𝜏𝐶 (ℎ) + 𝑟𝐿,ℎΔ𝜏𝐿 (ℎ)

]
, (A.23)

where Δ𝜏𝑖 (ℎ) = Δ𝜏𝑖 (0) × IRF(𝜏𝑖, ℎ) captures the persistence of tax rates.
10

This gap must be closed by raising taxes in future periods. Define a repayment rule𝑊 that

specifies the path {Δ𝜏𝑘,𝑡 }𝑡≥1 satisfying:∑︁
𝑡≥1

∑︁
𝑘

𝛾 𝑡𝑟𝑘,𝑡Δ𝜏𝑘,𝑡 = Δ𝑅PV. (A.24)

The present-value welfare cost of this repayment is:

Welfare cost(𝑊 ) =
∑︁
𝑡≥1

∑︁
𝑘

𝛽𝑡𝑔𝑘,𝑡Δ𝜏𝑘,𝑡 . (A.25)

The marginal cost of public funds for deferral under rule𝑊 is:

MCPF
PV(𝑊 ) = Welfare cost(𝑊 )

Δ𝑅PV
=
∑︁
𝑡,𝑘

𝜔𝑡,𝑘 (𝑊 )
(
𝛽𝑡

𝛾 𝑡

)
MCPF𝑘,𝑡 , (A.26)

where 𝜔𝑡,𝑘 (𝑊 ) = 𝛾 𝑡𝑟𝑘,𝑡Δ𝜏𝑘,𝑡/Δ𝑅PV
are fiscal-PV-normalized repayment shares (summing to one

across (𝑡, 𝑘)) and MCPF𝑘,𝑡 = 𝑔𝑘,𝑡/𝑟𝑘,𝑡 is the standard MCPF for tax 𝑘 at time 𝑡 .

Equation (A.26) reveals that the MCPF of deferral is a weighted average of future tax MCPFs,

where the weights depend on both the repayment timing and the discount wedge 𝛽𝑡/𝛾 𝑡 . When

𝑟debt < 𝜌 (as in recent decades), 𝛽𝑡/𝛾 𝑡 < 1 for 𝑡 > 0, mechanically lowering the effective MCPF of

10. This is a local approximation using baseline revenue gradients and policy persistence. The preferred approach

for Section 4 directly estimates revenue IRFs for the reform package: Δ𝑅PV =
∑
ℎ 𝛾

ℎ · IRFRev (ℎ |TCJA shock). Equa-

tion (A.23) is valid locally but does not capture general equilibrium revenue responses to the full reform.
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deferral relative to the case where 𝑟debt = 𝜌 . Intuitively, low government borrowing rates make

deferral cheaper because the fiscal constraint underweights future costs relative to social welfare

accounting.

Bounds without specifying the repayment rule. The repayment rule 𝑊 is unobserved.

Equation (A.26) expresses MCPF
PV(𝑊 ) as a convex combination of atoms:

𝑎𝑡,𝑘 :=

(
𝛽𝑡

𝛾 𝑡

)
MCPF𝑘,𝑡 . (A.27)

When discount rates are constant over time, this simplifies to 𝑎𝑡,𝑘 =

(
1+𝑟debt

1+𝜌

)𝑡
MCPF𝑘,𝑡 .

Since the weights 𝜔𝑡,𝑘 (𝑊 ) are non-negative and sum to one, MCPF
PV(𝑊 ) must lie within

the convex hull of these atoms. For any plausible repayment horizon T = [𝑡1, 𝑡2] and set of

instruments K , this implies:

min

𝑡∈T ,𝑘∈K
𝑎𝑡,𝑘 ≤ MCPF

PV(𝑊 ) ≤ max

𝑡∈T ,𝑘∈K
𝑎𝑡,𝑘 . (A.28)

These bounds allow robust evaluation without specifying the repayment rule. Let 𝑗 denote

the tax that would be raised under a revenue-neutral alternative (typically the less distortionary

instrument at 𝑡 = 0, chosen to minimize the MCPF of immediate financing). Then:

Case 1: Deferral robustly justified. If max𝑡,𝑘 𝑎𝑡,𝑘 < MCPF 𝑗,0, then MCPF
PV(𝑊 ) < MCPF 𝑗,0

for all possible repayment rules. Deficit financing is unambiguously superior to revenue-neutral

financing, regardless of how or when the debt is repaid.

Case 2: Deferral robustly dominated. If min𝑡,𝑘 𝑎𝑡,𝑘 > MCPF 𝑗,0, then MCPF
PV(𝑊 ) > MCPF 𝑗,0 for

all possible repayment rules. Revenue-neutral financing is unambiguously superior, regardless of

repayment details.

Case 3: Inconclusive. If min𝑡,𝑘 𝑎𝑡,𝑘 < MCPF 𝑗,0 < max𝑡,𝑘 𝑎𝑡,𝑘 , the answer depends on the actual

repayment rule. The identified range is [min𝑎𝑡,𝑘 ,max𝑎𝑡,𝑘]. If the range is narrow, the conclusion

is approximately robust. If the range is wide, specifying or estimating the repayment rule 𝑊

becomes necessary for a definitive evaluation.

This bounding approach follows directly from the structure of the problem. It requires no

auxiliary assumptions about repayment beyond the horizon T and the set of feasible instruments

K . All primitives—MCPF𝑘,𝑡 , 𝛽 , 𝛾—are estimated from the empirical framework in Section 4.
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H Classic Optimal Tax Results as Projections

This appendix demonstrates that the projection framework nests several canonical results from

optimal tax theory. While the main text focuses on policy evaluation, these derivations show

the framework is consistent with standard normative prescriptions under various structural as-

sumptions. The first two subsections restate the Ramsey and Barro conditions in the notation

and geometry of this paper. The subsequent subsections show how the Atkinson–Stiglitz theo-

rem and the zero-capital-tax result can be interpreted as special configurations of the welfare and

revenue gradients under their usual assumptions.

H.1 The Ramsey Inverse Elasticity Rule

The Ramsey problem seeks the tax structure that minimizes welfare costs subject to raising a

fixed revenue requirement. At the optimum, the first-order conditions imply that marginal costs

of public funds are equalized across instruments. The projection framework recovers this result

and clarifies its geometric interpretation.

Proposition 3 (Ramsey as Perfect Alignment). At a Ramsey optimum 𝝉 , the welfare and revenue
gradients are perfectly aligned:

𝑔(𝝉 ) = 𝜇𝑟 (𝝉 )

for some scalar 𝜇 > 0. Equivalently, cos𝜃 = 1 and the alignment is perfect.

Proof. The Ramsey problem is:

min

𝝉
𝑊 (𝝉 ) subject to 𝑅(𝝉 ) = 𝑅.

The Lagrangian is L =𝑊 (𝝉 ) − 𝜇 [𝑅(𝝉 ) − 𝑅]. The first-order condition is:

𝜕𝑊

𝜕𝜏𝑖
= 𝜇

𝜕𝑅

𝜕𝜏𝑖
for all 𝑖,

which in vector form is𝑔(𝝉 ) = 𝜇𝑟 (𝝉 ). Since𝑔 and 𝑟 point in the same direction, the angle between

them is zero: cos𝜃 = 1. □

When gradients are perfectly aligned, the projection 𝑃⊥𝑟𝑔 = 0 is the zero vector: there is no

component of the welfare gradient perpendicular to revenue. All welfare improvements require

changing total revenue. This is the geometric interpretation of “no further revenue-neutral gains

are available.”
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The Ramsey optimum also implies MCPF equalization. From 𝑔𝑖 = 𝜇𝑟𝑖 , we have:

MCPF𝑖 =
𝑔𝑖

𝑟𝑖
= 𝜇 for all 𝑖 .

All MCPFs equal the Lagrange multiplier 𝜇, the shadow cost of the revenue constraint.

The inverse elasticity rule. Under additional structure, the Ramsey formula yields the classic

inverse elasticity result. Suppose:

1. Utilitarian welfare: 𝑔𝑖 = 𝐵𝑖 (the tax base).

2. Ad valorem taxation with instrument-specific rates 𝜏𝑖 .

3. No cross-base spillovers: Λ𝑖 = 0 (partial equilibrium).

Then from equation (3), the revenue gradient is:

𝑟𝑖 = 𝐵𝑖

[
1 − 𝜏𝑖

1 − 𝜏𝑖
𝜀𝑖𝑖

]
.

MCPF equalization 𝑔𝑖/𝑟𝑖 = 𝜇 implies:

𝐵𝑖

𝐵𝑖

[
1 − 𝜏𝑖

1−𝜏𝑖 𝜀𝑖𝑖
] = 𝜇 ⇒ 𝜏𝑖

1 − 𝜏𝑖
𝜀𝑖𝑖 = 1 − 1

𝜇
.

Since the right-hand side is constant across 𝑖 , we have
𝜏𝑖

1−𝜏𝑖 𝜀𝑖𝑖 = constant. For small tax rates, this

implies:

𝜏𝑖 ∝
1

𝜀𝑖𝑖
.

Taxes should be inversely proportional to elasticities. Highly elastic bases receive low taxes;

inelastic bases receive high taxes. This is Ramsey’s (1927) classic result, recovered as the shadow

of perfect alignment under no cross-base spillovers.

H.2 Barro Tax Smoothing

Barro (1979) shows that when the government’s borrowing rate equals the social discount rate,

optimal tax policy smooths distortions over time. This result emerges directly from the intertem-

poral projection framework in Section 3.1.

Proposition 4 (Barro as Temporal MCPF Equalization). Consider the dynamic Ramsey problem
from equation (A.18). Suppose (1) the government’s borrowing rate equals the social discount rate:
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𝑟debt = 𝜌 , so 𝛾 = 𝛽 ; and (2) Tax bases and behavioral responses are stationary: 𝐵𝑖,𝑡 = 𝐵𝑖 and 𝜀𝑖𝑘,𝑡 = 𝜀𝑖𝑘
for all 𝑡 . Then at the Ramsey optimum, MCPFs are constant over time:

MCPF𝑖,𝑡 = MCPF𝑖,𝑠 for all 𝑡, 𝑠 .

Proof. From equation (A.20), the first-order condition for the dynamic Ramsey problem is:

𝛽𝑡
𝜕𝑊𝑡

𝜕𝜏𝑖,𝑡
= 𝜆𝛾 𝑡

𝜕𝑅𝑡

𝜕𝜏𝑖,𝑡
.

When 𝛾 = 𝛽 , this simplifies to:

𝜕𝑊𝑡

𝜕𝜏𝑖,𝑡
= 𝜆

𝜕𝑅𝑡

𝜕𝜏𝑖,𝑡
.

The discount factors cancel. Under stationarity, 𝜕𝑊𝑡/𝜕𝜏𝑖,𝑡 = 𝑔𝑖 and 𝜕𝑅𝑡/𝜕𝜏𝑖,𝑡 = 𝑟𝑖 are constant

across 𝑡 . Therefore:

MCPF𝑖,𝑡 =
𝑔𝑖

𝑟𝑖
= 𝜆 for all 𝑡 .

MCPFs are equalized not only across instruments (the static Ramsey condition) but also across

time. □

This is Barro’s tax smoothing result: optimal policy equalizes distortions intertemporally.

When 𝑟debt = 𝜌 , there is no wedge between fiscal and social accounting, so the government

should smooth MCPFs over time just as it smooths them across instruments. Temporary shocks

to revenue needs should be financed primarily by debt, with small permanent tax adjustments to

service the debt, maintaining equalized MCPFs across time. Permanent shocks should be financed

by permanent tax increases.

When 𝑟debt ≠ 𝜌 , the result no longer holds. From equation (A.21):

MCPF𝑖,𝑡 = 𝜆

(
1 + 𝑟debt

1 + 𝜌

)𝑡
.

If 𝑟debt < 𝜌 (as in recent decades), the fiscal constraint underweights future costs relative to social

welfare, creating an incentive to front-load taxation. MCPFs should rise over time at rate (1 +
𝑟debt)/(1+𝜌) < 1. Conversely, if 𝑟debt > 𝜌 , MCPFs should decline over time, favoring deferral. The

projection framework generalizes Barro’s result to environments with discount wedges, showing

that optimal policy adjusts for the gap between market rates and social preferences.
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H.3 The Atkinson–Stiglitz Theorem

Atkinson and Stiglitz (1976) show that under weak separability between consumption and labor,

and with access to an unrestricted non-linear income tax, differential commodity taxation has no

role in the second-best. In the projection framework, this theorem implies a particular structure

for the welfare and revenue gradients in the commodity-tax subspace.

Let the tax vector be (𝜏𝑦, 𝜏𝑐), where 𝜏𝑦 is a non-linear income tax and 𝜏𝑐 ∈ R𝑚 are commodity

taxes. Partition the welfare and revenue gradients as

𝑔 =
©­«
𝑔𝑦

𝑔𝑐

ª®¬ , 𝑟 =
©­«
𝑟𝑦

𝑟𝑐

ª®¬ .
Corollary 3 (Atkinson–Stiglitz as a projection result). Under the Atkinson–Stiglitz assumptions
(weak separability and identical subutility across individuals), evaluated at the second-best optimum
(𝜏𝑦, 𝜏𝑐) with an optimally chosen non-linear income tax, there exists a scalar 𝜆 such that

𝑔𝑐 = 𝜆𝑟𝑐 .

Hence any reform that (i) changes only commodity taxes and (ii) is revenue-neutral must satisfy
𝑟⊤𝑐 𝑑𝜏

𝑐 = 0, and therefore yields zero first-order welfare effect:

𝑔⊤𝑐 𝑑𝜏
𝑐 = 𝜆𝑟⊤𝑐 𝑑𝜏

𝑐 = 0.

Within the commodity-tax subspace there is no component of the welfare gradient orthogonal to the
revenue gradient, so revenue-neutral commodity-tax tilts cannot improve welfare.

Proof. Atkinson and Stiglitz show that with an unrestricted non-linear income tax and weak

separability, any allocation achievable with differential commodity taxes can be replicated, for

the same revenue, using the non-linear income tax alone and a uniform commodity tax. Thus

differential commodity taxation has no screening value at the second-best optimum. Locally,

this means that small commodity-tax perturbations affect welfare only through their effect on

revenue. Formally, there exists 𝜆 such that for all 𝑑𝜏𝑐 ,

𝑑𝑊 = 𝑔⊤𝑐 𝑑𝜏
𝑐 = 𝜆 𝑟⊤𝑐 𝑑𝜏

𝑐 .

If a commodity-only reform is revenue-neutral, then 𝑟⊤𝑐 𝑑𝜏
𝑐 = 0, and the expression above implies

𝑔⊤𝑐 𝑑𝜏
𝑐 = 0 as well. Such reforms therefore have zero first-order welfare effect. This is exactly the

Atkinson–Stiglitz conclusion in the projection framework. □
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The key geometric point is that 𝑔𝑐 is collinear with 𝑟𝑐 : the welfare gradient in the commodity-

tax subspace points fully in the revenue direction. The revenue-neutral hyperplane cuts this

subspace along directions orthogonal to 𝑟𝑐 , and welfare is flat along those directions.

H.4 Zero Capital Taxation as a Limiting Case

Chamley (1986) and Chari, Nicolini, and Teles (2020) show that under standard macroeconomic

assumptions (infinitely lived agents, perfect capital markets, homothetic preferences, additively

separable preferences over time), the optimal long-run tax on capital is zero. In those environ-

ments, a permanent change in the capital tax rate induces such a large long-run response of

the capital stock that the present-value revenue raised by the tax tends to zero. The projection

framework makes this logic transparent by expressing it in terms of the present-value revenue

gradient.

In the notation of Section 3.1, consider a permanent increase in the capital tax 𝜏𝐾,0. Its present-

value revenue effect is

𝑟𝑃𝑉𝐾,0 =

∞∑︁
𝑡=0

𝛾 𝑡
𝜕𝑅𝑡

𝜕𝜏𝐾,0
,

and the present-value marginal cost of public funds for capital taxation is

MCPF
𝑃𝑉
𝐾 =

𝑔𝑃𝑉
𝐾,0

𝑟𝑃𝑉
𝐾,0

.

In a Chamley-type environment, long-run capital supply is effectively infinitely elastic: a perma-

nent increase in 𝜏𝐾 causes the capital tax base to shrink so much over time that

𝑟𝑃𝑉𝐾,0 → 0.

Given a finite welfare gradient 𝑔𝑃𝑉
𝐾,0

, this implies MCPF
𝑃𝑉
𝐾

→ ∞. In the projection formula, instru-

ments with very high MCPFs are pushed toward their lower bounds. When the present-value

revenue gradient for capital taxation vanishes, the optimal reform direction drives 𝜏𝐾 toward

zero. The familiar zero-capital-tax result thus appears as a limiting case of the general projection

framework, corresponding to an extreme configuration of the present-value revenue gradient.

This limiting case is not generic. If the present-value elasticity of capital supply is large but fi-

nite—because of adjustment costs, firm-specific capital, borrowing constraints, or heterogeneous

discount rates—then 𝑟𝑃𝑉
𝐾,0

remains strictly positive and so does MCPF
𝑃𝑉
𝐾

. Straub and Werning

(2020) show that relaxing the standard assumptions can overturn the zero-capital-tax result. In

the projection framework, this fragility appears as sensitivity of the optimal capital tax to the
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shape of 𝑟𝑃𝑉
𝐾

: whenever 𝑟𝑃𝑉
𝐾,0

does not collapse to zero, the optimal reform sets a finite capital tax

determined by the same MCPF equalization logic as for any other instrument.
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