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1 Introduction

Without capital maintenance, occupations such as auto mechanics would not exist, nor
would internal teams to ensure equipment runs properly and janitors to keep up and re-
pair structures. The economy would lose about one percent of value added, gross mainte-
nance expenditures close to half of new investment, and a prominent feature of contracts
to purchase or lease equipment (McGrattan and Schmitz Jr. 1999; Goolsbee 2004). In that
world, the traditional neoclassical approach to user cost would be fully descriptive (Feld-
stein and Rothschild 1974). Instead, we live on a rather different planet, one in which
the economic decision to invest in new capital or maintain old capital is fundamental to
understanding long-run movements in the capital stock. In this world, taxes play a crit-
ical role in determining long-run quantities of maintenance and investment in different
capital types. Maintenance is deductible from firm profits, while the after-tax price of
investment is determined by the collection of tax provisions influencing investment in
different assets.

This paper investigates the positive and normative consequences of relaxing the as-
sumption implicit in standard tax policy analysis that the no-maintenance world pre-
vails and explicit that the demand for maintenance is not only perfectly inelastic, but
zero. This is particularly evident in the main tool for macroeconomic analyses of taxa-
tion, the neoclassical growth model (NGM). Expanding on earlier work from McGrattan
and Schmitz Jr. (1999) on homogeneous capital with endogenous maintenance and depre-
ciation, I build out the neoclassical growth model with maintenance (NGMM) to include
heterogeneous capital. In practice, capital depreciates at different rates and the demand
for maintenance varies substantially between them, which implies significant variabil-
ity in depreciation technologies. I model this through a constant-elasticity depreciation
function that varies by capital type through a level or “quality” parameter and through a
parameter that captures the maintenance elasticity of depreciation. Putting depreciation
technologies together with a realistic capital tax system yields a rich demand system for
maintenance and capital.

Within the theoretical NGMM framework, I show that the assumption of perfectly in-
elastic and zero demand for maintenance is not innocuous when analyzing the positive
effects of tax policy. In the model, the decision to maintain old capital or invest in new
capital is determined by the relative price of maintenance to investment together with
the depreciation technology. Reflecting current policy practice, the relevant relative price
is determined by a tax on profits—from which maintenance is exempt—and an asset-
specific subsidy on investment capturing policies like the investment tax credit and tax
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depreciation allowances. Increases in the relative price of maintenance—equivalently, de-
creases in the marginal effective tax rate—lead firms to substitute away from maintenance
at a rate determined by the curvature of the depreciation function. Capital with a higher
maintenance elasticity of depreciation is relatively shielded from changes in policy be-
cause depreciation endogenously responds, while less responsive capital types are more
sensitive and hence closer to the Hall and Jorgenson (1967) benchmark. As the tax benefit
to maintaining old capital declines, so does the demand for maintenance. Using the ter-
minology of Goolsbee (2004), which identifies high-maintenance capital with low-quality
capital, the relative quantity of low-quality capital declines as taxes decline. This stands
in stark contrast to the NGM, where the relative quantities of capital are constant with
uniform changes in tax policy.

Naturally, accounting for heterogeneously elastic demand for capital maintenance
opens a new channel for heterogeneity in the elasticity of different capital types to changes
in tax policy. With that in mind, I show that a simple normative extension to the NGMM
results in a Ramsey planner who would optimally choose quite different tax rates on
capital depending on their respective depreciation technologies. In comparison, failure to
account for the maintenance channel yields a planner who chooses tax rates based only on
the role of each capital type in the aggregate production function, a result from Feldstein
(1990) that this model nests. Given practical variance in both depreciation technologies
and observed marginal effective tax rates, the maintenance channel is critical to consider
for evaluating how close current policy is to optimal policy. As a benchmark, I assume
current tax rates—in which the marginal effective tax rate on equipment is about 6.5%
and 20% on structures—are optimal for a planner who does not account for maintenance.
A simple quantitative accounting exercise suggests that, for a grid of plausible depreci-
ation functions for equipment and structures, taxes are too high on structures and too
low on equipment. Much of this result is driven by the fact that equipment depreciates
faster than structures, so that even when the structures maintenance elasticity is higher,
demand for equipment maintenance may be higher. Consequently, as long as the main-
tenance channel exists, it is robustly true that taxes should be more uniform than they
currently are when viewed through the maintenance paradigm.

Next, toward putting a point estimate on the positive and normative quantitative ef-
fects of the maintenance channel, I estimate depreciation functions for several types of
capital using the Annual Survey of Manufactures. This is a difficult task because there is
little data on capital maintenance, let alone broken down by type. I proceed in two steps.
First, following Fisher (2006), I extend the NGMM to a stochastic setting. Second, I use
theory-implied regressions to implicitly estimate the maintenance elasticity from the re-
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sponse of gross investment to permanent innovations in the relative price of maintenance
over the period 1972-2018 for equipment and structures. Theory suggests that the long-
run elasticity of the gross investment rate with respect to the relative price of maintenance
is tightly related to the maintenance elasticity. I construct industry-specific shocks to this
relative price building on the methodology of Fisher (2006). Then, together with a novel
smooth local projections panel IV approach, I estimate the elasticity of the asset-specific
gross investment rate with respect to the relative price of maintenance, which pins down
the maintenance elasticity. Ten years after a unit shock to the relative price of mainte-
nance, the implied maintenance elasticity of depreciation for equipment is 0.4, while it is
0.7 for structures.

Finally, I quantify the positive and normative relevance of the maintenance channel.
First, using the NGM as a foil, I reanalyze the 2017 Tax Cuts and Jobs Act using Barro and
Furman (2018). The NGMM predicts a long-run capital-labor ratio that is numerically
equivalent to cutting the capital share by 15-20% in the NGM. Second, I use my empir-
ical point estimates of depreciation functions for equipment and structures to estimate
optimal tax rates. Optimal taxes are roughly 8.7% on equipment and 12.9% on structures,
compared to current taxes of 6.5% and 20%.

Literature. This paper relates to several strands of literature. First, it connects to a long-
standing tradition of using the Hall and Jorgenson (1967) user cost of capital to analyze tax
policy. The Hall-Jorgenson approach, which assumes constant depreciation and replace-
ment rates for existing capital, remains the gold standard for analyzing tax policy (Barro
and Furman 2018; Chodorow-Reich et al. 2023). However, my work is closer to theoretical
work that deviates from constant user cost. In particular, Feldstein and Rothschild (1974)
study the conditions under which replacement investment is constant, with particular fo-
cus on whether the standard user cost formula is generally applicable. Building on that
work, McGrattan and Schmitz Jr. (1999) develop a homogeneous capital model of mainte-
nance and investment, with maintenance expenditures pinned down by the relative price
of maintenance to investment. I extend their approach to many types of capital goods,
connect it to optimal policy, and develop an empirical and quantitative framework. While
their observations on tax policy are useful in my approach, their focus on homogeneous
capital restricts them from paying close attention to changes in relative demand. Several
other papers build on McGrattan and Schmitz Jr. (1999) in the areas of public capital main-
tenance (Kalaitzidakis and Kalyvitis 2004), cyclical fluctuations (Albonico, Kalyvitis, and
Pappa 2014), and investment theory (Boucekkine, Fabbri, and Gozzi 2010; Kabir, Tan, and
Vardishvili 2023). To my knowledge, my work is the first attempt to estimate depreciation

3



functions, extend to optimal policy, and consider the role of capital heterogeneity.
Additionally, I contribute to an empirical literature documenting the empirical rele-

vance of capital maintenance. Goolsbee (1998b) and Goolsbee (2004) present direct ev-
idence that the maintenance channel exists. The former examines factors affecting the
decision to retire airplanes. Retirement directly relates to maintenance because, rather
than maintain an old airplane, a firm simply invests in a new one. As Goolsbee (1998b)
notes, the capital retirement decision is not economic in the neoclassical growth model.
Focusing on an investment tax credit for a 13 year-old Boeing 707, Goolsbee finds that
moving the investment tax credit from zero to 10% increases the probability of retirement
from 9% to 12%. If we interpret depreciation rates as reflecting the probability an asset be-
comes useless to the firm in a particular year—whether through obsolescence, retirement,
failure, or some other cause—then Goolsbee’s finding suggests that the depreciation rate
is quite elastic with respect to the tax rate. Taking his estimate seriously suggests that
the typical neoclassical approach overstates the elasticity of investment by around 75%
(Goolsbee 1998b). Relatedly, Goolsbee (2004) convincingly argues that the quality elastic-
ity of capital with respect to the cost of capital is around 0.5%, where quality is roughly
measured with maintenance expenditures per unit of capital. Additionally, economists
have documented a clear connection between maintenance and depreciation in the hous-
ing literature. For example, Knight and Sirmans (1996) study the effect of maintenance
on housing depreciation and find that poorly maintained homes depreciate significantly
faster than their well-maintained counterparts, while Harding, Rosenthal, and Sirmans
(2007) find that housing depreciates about 0.5 percentage points less per year after ac-
counting for maintenance. I build on this literature to estimate depreciation functions us-
ing industry-specific shocks through the framework of Fisher (2006). Using these shocks
as an instrument for the relative price, I estimate asset-specific depreciation functions.

This work relates to a theoretical literature on optimal differential capital taxation.
Ramsey-style optimal tax reasoning suggests that if capital is taxed, it should be taxed
in inverse proportion to its tax elasticity. In standard models, this comes solely from the
production function, an insight nested by Feldstein (1990), which studies differential tax-
ation when one capital good’s tax rate is fixed. The optimal tax formula I derive nests
Feldstein’s and adds an additional insight, namely that the maintenance channel may
substantially change the results derived from looking solely at the production function.
Judd (1997) argues that equipment should be given preferential tax treatment over struc-
tures because use of the former indicates greater market power and hence higher pre-
existing distortions that a higher tax would only exacerbate. My setting abstracts from
imperfect competition. A significant body of research focuses on differential taxation for
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structural or redistributive reasons. For example, Slavı́k and Yazici (2014, 2019) find that
equipment should be taxed more than structures, with an optimal differential of approx-
imately 40 percentage points due to differential capital-skill complementarities between
types of capital and types of labor. Beraja and Zorzi (2022) derive differential tax rates for
automation based on an efficiency argument in favor of relaxing borrowing constaints for
workers displaced by automation. Acemoglu, Manera, and Restrepo (2020), Thuemmel
(2022), and Costinot and Werning (2022) derive optimal tax formulas for capital based on
elasticity formulas. While I do not address these structural concerns, I sharpen the results
with a simple neoclassical framework. Quantitatively, my results agree with Slavı́k and
Yazici (2014) and Acemoglu, Manera, and Restrepo (2020) that tax rates on equipment
should be higher than they are currently.

Methodologically, this paper represents an empirical advance on the identification of
long-run shocks in the neoclassical model. Fisher (2006), Guerrieri, Henderson, and Kim
(2020), and others, building on earlier work from Greenwood, Hercowitz, and Krusell
(2000), identifies long-run investment-specific technology shocks using the theoretical
restrictions implied by permanent movements in relative prices, tehcnology, and labor
shocks in a structural vector autoregression. I prove that a similar approach is sensible
in the NGMM, but apply it to panel data rather than macrodata. To trace out the long-
run effect of shocks, I build on work from Barnichon and Brownlees (2019) and McKay
and Wolf (2022) to develop smooth local projections for panel data. Whereas the former
develop the method for aggregate time series data and the latter prove it is often supe-
rior to standard local projections, this paper is the first to implement it for panel data.
Boehm, Levchenko, and Pandalai-Nayar (2023) similarly use standard local projections
to estimate long-run trade elasticities.

Roadmap. In Sections 2 and 3, I develop a theoretical framework to analyze the positive
and normative consequences of elastic and heterogeneous demand for capital mainte-
nance. In Section 4, I evaluate the empirical relevance of the maintenance channel for tax
policy. In section 5, I document the quantitative significance of the maintenance channels
positively and normatively with point estimates from Section 4. I conclude in Section 6.
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2 The Transmission of Capital Tax Policy with Endogenous

Depreciation

In this section, I embed endogenous depreciation into a partial equilibrium neoclassical
model of the firm with multiple capital types. In the model, demand for maintenance
is determined by the relative price of maintenance to investment, which is a function of
tax policy. The resulting parsimonious framework makes clear predictions about how
accounting for endogenous depreciation affects the traditional view of differential capital
taxation from a positive perspective. In particular, higher tax rates lead the private sector
to substitute toward maintenance-intensive capital. Moreover, because some types of
capital have a higher maintenance elasticity of depreciation, they are relatively inelastic
with respect to changes in taxes, leading to substantially different equilibrium allocations
of capital from the benchmark neoclassical model.

2.1 A Partial Equilibrium Neoclassical Firm

Consider a representative firm that produces an output good Yt with N capital types and
labor according to production technology

Yt = F(K1,t, . . . , KN,t, Ht), (1)

where F(·) is twice continuously differentiable in each argument with positive and di-
minishing marginal products. The firm owns its own capital stock. Every period, for
each capital type i, the firm chooses how much to spend on investing in new capital, Xi,t,
and how much to spend on maintaining existing capital Mi,t. A depreciation technology
δi(mi,t) transforms a rate of maintenance mi,t ≡ Mi,t

Ki,t
into capital Ki,t. Consequently, the

law of motion for capital type i is

Ki,t+1 = Xi,t + (1 − δi(mi,t))Ki,t. (2)

Note that indexing the depreciation function by capital type gives rise to the possibility
that depreciation technologies vary across capital types. Moreover, because there is no
productivity in the model, it is not possible to either make old capital more productive
than new capital or for new capital to be more productive than old capital. Although
Harris and Yellen (2023) show that this is an empirically important channel, I abstract
away from it here because making old capital more productive than new capital would be
considered new investment under the current tax code and would have to be capitalized.
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With that in mind, I impose the following assumptions on the depreciation technology.

Assumption 1. The depreciation technology for capital type i is given by

δi(mi,t) = γim
−ωi
i,t , γi, ωi > 0.

Given Assumption 1, depreciation is summarized by two parameters: a level param-
eter γi and an elasticity parameter ωi. ωi captures the maintenance elasticity of deprecia-
tion, while γi captures a level effect. For the same elasticity, a higher value of γi leads to a
higher demand for maintenance, which corresponds to the notion of quality in Goolsbee
(2004). I discuss these parameters in more detail later in the section.

The firm encounters two tax policies. First, there is a tax on output net of expenditures
on maintenance and labor. In practice, both are deductible from business taxes. Second,
new investment Xi,t is subsidized at rate τx

i,t. One can think of this as combining the
investment tax credit and the net present value of tax depreciation allowances which typ-
ically show up in a Jorgenson-style user cost approach (e.g., Barro and Furman (2018)). In
most models and in practice, these two aspects of the tax system account for most of why
taxes differ between asset types. Throughout, I refer to τx

i,t as a depreciation allowance.
Flow dividends are given by

dt = (1 − τc
t )

(
Yt − wtHt −

N

∑
i=1

Mi,t

)
−

N

∑
i=1

(1 − τx
i,t)Xi,t. (3)

Letting the firm’s discount rate be given by rk, the firm’s objective is to maximize the
present value of dividends through its choices of capital, labor, maintenance, and invest-
ment. This implies the following optimality conditions:

FHt = wt (4)

mi,t =

(
1

γiωi

1 − τc
t

1 − τx
i,t

) −1
1+ωi

(5)

(1 + rk)(1 − τx
i,t) = (1 − τc

t+1)FKi,t+1 + (1 − τx
i,t+1)

(
1 − γi (1 + ωi)m−ωi

i,t+1

)
, (6)

where (5) and (6) apply to all capital types i = 1, . . . , N. I discuss each condition subse-
quently.
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Optimal Maintenance

The choice between maintaining old capital and investing in new capital is fully captured
by (5). In the model, differences in relative prices are entirely determined by taxes. An
increase in the common tax rate τc

t decreases the relative price of maintenance, while
an increase in τx

i,t raises the relative price. Putting these together, the choice between
maintenance and new investment is pinned down by the marginal effective tax rate on
capital type i:

τi,t = 1 − 1 − τc
t

1 − τx
i,t

.

Note that precisely because maintenance and investment are both dynamic decisions, the
trade-off between them is static. Under the constant elasticity assumption, we can make
a precise statement about the substitutability between investment and maintenance.

Proposition 1. The long-run elasticity of the gross investment rate of capital type i with respect
to the relative price of maintenance to investment is given by ωi

1+ωi
.

This follows directly from manipulation of the first-order conditions together with the
fact that steady-state investment is equal to depreciation. Consequently, changes in the
relative price of maintenance to investment lead the gross investment rate of a particular
capital type to shift, in the long-run, as a direct function of its corresponding mainte-
nance elasticity. Even outside steady-state, ωi is an important parameter. Not only does
it determine the elasticity of substitution between investment and maintenance, but it
determines the elasticity of demand for maintenance. The more elastic demand is, the
more maintenance changes when taxes change and, consequently, the more endogenous
depreciation is with respect to tax policy.

The parameter γi more closely approximates quality in the sense of Goolsbee (2004).
γi is a level shifter in maintenance demand, while ωi determines the demand elasticity.
Hence, as long as ωi > 0, γi amplifies the effect of the maintenance channel. Lower qual-
ity capital—in the sense of the demand curve being shifted up by γi—is more exposed to
tax policy for precisely this reason.

Another interpretation of optimal maintenance is through measurement error. Because
depreciation is contingent on tax policy, any measure of depreciation is a function of cur-
rent policy. Note that this has potentially large implications for quantitative analyses of
tax policy that rely on user cost. Long-run estimates of the effects of capital taxation will
be biased by the extent to which the proposed tax policy change is different from tax pol-
icy at the time depreciation was initially measured. This is particularly relevant for the
United States, where many measures of depreciation still used today are from the 1970s,
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when taxes were much higher than today. Canada, which updates depreciation more
frequently than the United States, shows a decline of measured depreciation together
with business taxes (Baldwin, Liu, and Tanguay 2015). Viewed through the first-order
condition for maintenance, the degree of measurement error depends crucially on both
parameters ωi and γi. While a positive maintenance elasticity makes measurement possi-
ble, the quality parameter determines how much the effect is amplified. For example, the
γ parameter for equipment is probably much larger than structures, which means that the
degree of measurement error is likely larger in levels for equipment. In Appendix A.1, I
discuss this in more detail.

Capital Euler Equation

The capital Euler equation determines the extent to which the stock of capital changes
with respect to tax policy. For ease of interpretation, consider it in steady-state. Most
variants of the neoclassical growth model exhibit a constant user cost of the form

FKi =
rk + δ̃i

1 − τi
,

where rk is the required return on capital, δ̃i is the pre-tax cost of an additional unit of
capital, and 1− τi summarizes tax policy. δ̃i is usually identified with a constant, but it can
also be thought of as being equivalent to a constant depreciation rate plus an exogenous
maintenance rate. In the first case, the benefit of an additional unit of capital is balanced
against the cost of it depreciating in the following period. In the second case, the benefit of
an additional unit of capital must be balanced not only against the cost of it depreciating,
but also against the cost of having to maintain it in the following period. In both of
the exogenous depreciation and maintenance cases considered above, the tax elasticity of
user cost is constant across capital types

εNGM
τi

=
τi

1 − τi
.

Consequently, the only reason different types of capital may exhibit different tax elastici-
ties would be due to assumptions on the production function.

On the other hand, in the NGMM, user cost is

FKi =
rk + δi(mi)− δ′i(mi)mi

1 − τi
.

Here, like in the NGM with exogenous maintenance, more capital today means incur-
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ring more depreciation and maintenance costs tomorrow. However, there are two key
differences. First, the curvature and level of the depreciation function implies a particular
demand for maintenance, which then pins down the depreciation rate in a way that will
become clear shortly. With curvature, maintenance responds to relative prices, while it
does not in the NGM. Second, the NGMM features a tax elasticity of user cost approxi-
mately given by

εNGMM
τi

≈ εNGM
τi

(
1 − ωi

1 + ωi

)
.

Thus, the tax elasticity of user cost in the NGM is essentially given a haircut by the extent
to which the maintenance channel operates within a particular capital type, where the
magnitude of the haircut is determined by the elasticity of substitution between main-
tenance and investment. Consequently, ωi determines the extent to which maintenance
attenuates the effect of tax policy on capital accumulation. Indeed, the main mechanism
of the model is that the greater the maintenance elasticity, the more elastic maintenance
demand is with respect to price, so that as ωi rises, capital type i becomes more insulated
from changes in tax rates because depreciation declines relatively more. In the limiting
case with ωi large, the tax elasticity of user cost approaches zero so that the production
function becomes irrelevant in analyzing how the capital stock reacts to changes in tax
law.

Let K∗
i /K∗

j denote the optimal ratio of capital type i to capital type j, i.e., the ratio of
allocations at the undistorted optimum. Careful examination of user cost in the standard
NGM compared to the NGMM leads to the following conclusion.

Proposition 2. Given a change in the uniform capital tax rate τc and fixing τx
i = τx

j , the equi-
librium capital ratio Ki/Kj ̸= K∗

i /K∗
j if ωi ̸= ωj and Ki/Kj > K∗

i /K∗
j if ωi > ωj under the

NGMM. Under the NGM, Ki/Kj = K∗
i /K∗

j for all values of τc.

Essentially, common changes in tax policy are not neutral with respect to capital ra-
tios in the NGMM, while they are in the NGM. Therefore, conditional on taxing capital,
maintaining neutral capital ratios requires differential capital taxation. This follows di-
rectly from weak concavity of the production function together with the fact that a higher
maintenance elasticity implies a higher factor demand as tax rates rise. In the following
subsection, I make clear numerically why this matters.

2.2 Capital Tax Policy and Equilibrium Capital Allocations in the NGMM

A simple numerical example is sufficient to evaluate the distinction between the tradi-
tional NGM and the NGMM, particularly in light of Proposition 2. To illustrate the differ-
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ence, I experiment with steady-state allocations of capital, investment, and maintenance
for different values of a common tax rate.

Suppose production is given by

Y = KαE
E KαS

S ,

where equipment KE and structures KS are in intensive form. I set αE = αS = 0.2. Each
capital type has a power depreciation function given by

δE(mE) = γEm−ωE
E and δS(mS) = γSm−ωS

S .

I set ωS = 0.25, ωE = 1, and γE = γS = 0.01. Under this calibration, the undistorted
steady state maintenance rate and investment rate for equipment are mE = 0.1 and xE =

0.1, while the corresponding rates for structures are mS = 0.008 and xS = 0.03. Recall
that the steady state depreciation rate is the investment rate. The quality parameters are
equivalent to isolate the effect of the maintenance elasticity. For now, both equipment and
structures are taxed at the same rate τc.

In Figure 1, I plot the steady state allocations of investment, maintenance, capital, and
the composition of capital for a varying common tax rate τc for both the NGM and the
NGMM. The NGM is calibrated such that it has the same initial allocations at the undis-
torted optimum. In Figure 1a, the steady-state investment rate (solid lines) declines for
both structures and equipment under the NGMM, while there is no response of the in-
vestment rate to tax policy in the NGM (dashed lines). Because equipment has a higher
maintenance elasticity than structures, the investment rate responds more for equipment,
in line with Proposition 1. Figure 1b shows that as tax rates rise, NGMM maintenance
rates strongly respond, while by construction the NGM maintenance rates are constant.
Indeed, maintenance rates respond proportionally more than investment rates; that fol-
lows from the curvature of the depreciation technology.

The key policy question is the long-run effect of taxes on capital allocations. In Figure
1c, I plot the ratio of capital in the NGMM to its corresponding type in the NGM. For
the same calibration, the effect of capital tax policy on long-run allocations is attenuated
by the maintenance channel; there is about 40% more equipment in the NGMM than the
NGM and 20% more structures capital. Figure 1d indicates that uniform tax policy is not
neutral when depreciation technologies are not precisely equivalent. Whereas the NGM
ratio of equipment to structures is invariant to tax policy, the NGMM ratio is not. In
Figure 2, I plot the tax rate on equipment necessary to maintain a neutral capital ratio
under the NGMM in red compared to the corresponding tax rates in the NGM. Of course,

11



the neutral NGM tax rates are uniform. However, as long as the tax on structures is
positive, a correspondingly higher tax on equipment is necessary under the NGMM.
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(b) Maintenance Rate
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Figure 1: Comparing NGMM to NGM investment and maintenance rates, capital allocations, and
capital composition.

There are two takeaways. First, as evidenced by Figure 1c, the maintenance channel
may have a practically large quantitative effect; in Section 4, I estimate approximately
how large it is. At the same time, Figure 1d indicates that uniform tax rates cannot main-
tain capital neutrality. This is not a statement about optimality, but casual Ramsey intu-
tion suggests that differential taxation is optimal in general equilibrium conditional on
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the requirement to raise revenue from capital taxes. In the following section, I turn to
precisely that question.

0 0.2 0.4 0.6 0.8

0

0.2
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1

τS

τE

NGMM
NGM

Figure 2: Given a tax rate on structures, the blue line plots the required tax rate on equipment
necessary to ensure a neutral capital composition under the NGM, while the red line does the
same for the NGMM.

3 A Differential Tax Optimality Result

The economics in Section 2 suggest that the maintenance channel may be important for a
theory of optimal differential taxation; differing tax elasticities emerging from the main-
tenance channel intuitively correspond to the usual Ramsey logic about optimal taxation.
Governments the world over tax capital differentially and net of maintenance expen-
ditures. Usually, differential taxation emerges from a combination of a uniform tax on
capital paired with tax depreciation allowances and credits that differ by capital type.
Moreover, most types of capital tax policy changes are changes in differential capital tax
policy; the profit tax—which is essentially a uniform tax on capital—is changed far less
frequently (Romer and Romer 2010; Mertens and Ravn 2013). With that in mind, it is
practically important to consider a second-best theory of optimal taxation that takes as
given that revenue must be raised from capital and tax deductibility of capital mainte-
nance. Toward developing such a theory, I put the partial equilibrium model of the firm
in general equilibrium and solve the Ramsey problem for optimal marginal effective tax
rates on each capital type. After that, I consider the quantitative implications of optimal
tax theory for equipment and structures.
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3.1 Analytical Optimal Tax Rates

In the traditional approach to differential capital taxation, it would be reasonable to con-
clude that taxes should be levied uniformly so that there are no distortions in the marginal
rates of technical substitution between capital types (Diamond and Mirrlees 1971) or that
taxes should only differ depending on the properties of the production function (Feldstein
1990). In the latter case, the usual Ramsey logic tells us that if the stock of a capital type
is particularly elastic to changes in user cost, then its tax distortion should be relatively
smaller. That channel is captured entirely by the production function in the NGM. Under
the NGMM, that would only be true as a knife-edge case where depreciation technologies
do not differ between capital types, which is neither empirically nor intuitively attractive.
Thus, a utilitarian planner intent on levying capital taxes would need to account for both
quality of capital and the maintenance elasticity in setting optimal tax rates. Toward an
analytical result on optimal differential capital taxation, I extend the partial equilibrium
model of Section 2 to general equilibrium. Following Chari, Nicolini, and Teles (2020), an
accurate representation of the capital tax system favors a decentralization in which the
firm owns the capital stock.

General Equilibrium

Representative Firm. The representative firm is largely the same as in Section 2. It
chooses sequences of capital, investment, maintenance, and labor to maximize the present
value of dividends ∑∞

t=0 qtdt, where dt is the exactly as in (3). There two differences. The
first, which is inconsequential, is how the firm discounts the future. Letting qt represent
the price of one unit of the period-t good in terms of a good in period zero, the interest
rate between periods is given by

qt

qt+1
≡ 1 + rt, q0 = 1.

Second, I assume that the production function is constant returns to scale. Optimality
conditions are exactly as in (4), (5), and (6), with 1 + rt replacing 1 + rk in each capital
Euler equation.

Representative Household. A representative household has preferences over con-
sumption c and labor H given by

∞

∑
t=0

βt
[
u(ct)− v(Ht)

]
(7)
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where u is increasing, strictly concave, three times continuously differentiable, and v has
similar properties. β ∈ (0, 1] is the discount factor embodying the required return on
capital rk. The household earns labor income wtHt and dividend income from the rep-
resentative firm and trades shares of the firm st+1 at ex-dividend price pt, leading to the
budget constraint

ct + ptst+1 +
bt+1

1 + rt
= wtHt + ptst + dtst + bt, (8)

where s0 = 1 and initial bonds are b0. Because government bonds are in zero net sup-
ply, household borrowing is irrelevant. Choosing sequences of consumption, labor, and
shares of the firm to maximize (7) subject to (8) and a transversality condition given by
limT→∞ qt+1bT+1 ≥ yields first-order conditions given by

v′(Ht) = wtu′(ct) (9)

u′(ct) = βu′(ct+1)(1 + rt) (10)

1 + rt =
pt+1 + dt+1

pt
. (11)

No-arbitrage clearly requires that the return on each capital type must equal the return
on bonds.

Government. The government collects revenue from a tax τc
t on profits net of main-

tenance and wage payments to fund exogenous spending Gt and investment subsidies
τx

i,t.

Gt =
N

∑
i=1

(
τc

t Ki,t

(
FKi,t − mi,t

)
− τx

i,tXi,t

)
+

bt+1

1 + rt
− bt. (12)

I assume that bonds are in zero net supply so that capital taxes are the only source of rev-
enue for the government. Putting together the firm, the household, and the government,
the aggregate resource constraint is

ct + Gt +
N

∑
i=1

(Xi,t + Mi,t) = Yt. (13)

Equilibrium Definition

For notational convenience, let symbols without subscripts denote their infinite sequence
and bolded symbols denote the vector of capital types indexed by i. The equilibrium can
be defined as follows.
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Definition 1. A feasible allocation is a sequence (KKK, MMM, c, H, G) that satisfies the aggregate re-
source constraint (13).

Definition 2. A price system is a tuple of non-negative bounded sequences (w, r).

Definition 3. A government policy is a tuple of sequences (G, τc, τxτxτx, b).

Definition 4. A competitive equilibrium is a feasible allocation, a price system, and a government
policy such that (a) given the price system and the government policy, the allocation solves both
the firm’s problem and the household’s problem; and (b) given the allocation and the price system,
the government policy satisfies the sequence of government budget constraints (12).

Optimal Tax Policy

The optimal tax problem is straightforward: given a uniform capital tax rate τc
t , how

should the planner subsidize (or tax) each each asset type using τx
i,t as an instrument. In

effect, the government has N instruments. This is akin to a second-best problem in which
the government chooses the marginal effective tax rate on each capital type, similarly to
Feldstein (1990). Ultimately we will be concerned solely with steady state optimal tax
rates.

Definition 5. Given K1,0, . . . , KN,0, the Ramsey problem is to choose a competitive equilibrium
that maximizes household utility subject to its budget constraint, the aggregate resource con-
straint, and private optimality.

The government satisfies the Ramsey objective through its choice of tax depreciation
allowances, which is akin to choosing a marginal effective tax rate on each capital type.
I ignore bonds because the government must follow a balanced budget and because the
relevant object is the steady-state optimum rather than the transition path. Consequently,
I also set time-zero capital taxes to zero exogenously. After substituting firm optimality,
the planner chooses sequences of tax depreciation allowances, consumption, labor, main-
tenance, and capital to maximize houshold utility. In Appendix A.3, I write out the full
Lagrangian and optimality conditions.

Now, suppose government expenditures become constant after some period T and the
economy converges to a steady-state.

Proposition 3. All else equal, the optimal steady-state tax distortion on capital type i is increasing
in its maintenance elasticity and decreasing in capital quality.
Proof: See Appendix A.3.
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Intuition for Proposition 3 comes directly from the previous subsection. Exactly be-
cause maintenance determines the tax elasticity of each capital type, it plays a role in de-
termining optimal relative tax distortions for the same reasons as in the standard Ramsey
commodity tax literature. Here, however, a higher elasticity of demand for maintenance
corresponds to a lower tax elasticity of the capital stock, so that the optimal tax is increas-
ing in the maintenance elasticity. Moreover, because low quality capital types correspond
to high demand for maintenance, they amplify the maintenance elasticity channel and
hence should be taxed at a higher rate.

Consider the result in the context of the standard Ramsey tax literature. With a pos-
itive maintenance elasticity, the capital stock—or in models with labor, the capital-labor
ratio—is less sensitive to tax changes than a model without it. In neoclassical Ramsey
models like Chamley (1986) and Chari, Nicolini, and Teles (2020), the optimal tax on cap-
ital is zero. In the long run, it is not optimal to tax capital because it will lead to welfare
gains by way of a larger capital-labor ratio. Mechanically, introduction of endogenous
maintenance reduces such gains. Following the optimality logic from above, since cap-
ital taxes vary in effect across capital types, intuitively capital taxes should be set such
that the capital-labor ratio for each type of capital declines in accordance with the corre-
sponding maintenance elasticity, which captures the degree to which the tax elasticity of
a particular capital type differs from the standard constant depreciation case.

One special case of the production function is worth illuminating. Following Feldstein
(1990), define the production elasticity of production factor j with respect to production
factor i as

εKji =
FKj

FKjKi Kj
.

Let r̂i ≡ FKi − mi define the return on capital net of maintenance and suppose there are
no cross-partials between factors of production.

Example 1. With no cross-partials in production, the optimal tax ratio must satisfy

τi

τj
=

r̂j
FKj

εKjj −
ωj

1+ωj

r̂i
FKi

εKii −
ωi

1+ωi

(14)

and if ωi → 0 for all capital types, then the optimal tax ratio is

τi

τj
=

εKjj

εKii

. (15)

Example 1 is convenient because it illustrates two concepts quite clearly. First, the
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derived formula is simply a standard Ramsey rule that would appear consistent in a dif-
ferent setting with, for example, commodity taxation. That is, we simply have an inverse
elasticity rule with an adjustment for the maintenance elasticity. Second, inspection of
(15) reveals that Feldstein (1990) is a special case of my model. This is a surprising result
because his analysis is entirely static and assumes that one factor of production is un-
taxed, whereas mine is dynamic and makes no such assumptions about tax restrictions.
Here, the analysis from Feldstein (1990) on cross-elasticities carries through, namely that
taxes should be correspondingly lower when there are strong cross-elasticities in produc-
tion. With maintenance, that requires an adjustment for the maintenance elasticities of
other types of capital.1

Assuming the depreciation function is constant elasticity, we can make the following
conclusion about relative tax rates:

Proposition 4. Given a production function, relative tax rates can be fully characterized by two
parameters: a constant parameter γi and an elasticity parameter ωi.

For example, in the case where we have Cobb-Douglas production and two capital
types with equal capital shares, the ordering of optimal tax rates is apparent directly from
examination of each capital type’s depreciation function. In Barro and Furman (2018),
equipment and structures have roughly equivalent roles in the aggregate production
function. In the benchmark NGM, that would imply that optimal tax rates would be
roughly uniform. On the other hand, consideration of the maintenance channel may sug-
gest otherwise. In Section 4, I turn toward an empirical evaluation of the maintenance
channel to answer precisely this question.

3.2 A Range of Optimal Tax Rates

Given the analytical results, a natural next step is to consider their quantitative impor-
tance for real-world capital assets. In this subsection, I quantify optimal tax rates on
equipment and structures for a range of plausible depreciation functions. Equipment and
structures, the main types of physical capital, have different depreciation rates, so they
have different depreciation technologies.

Under permanent provisions in the tax code, the marginal effective tax rates on equip-
ment and structures are approximately 6.5% and 20%, respectively (Barro and Furman
2018). The magnitude and sign of that tax differential is common throughout OECD
countries (Office of Tax Analysis 2021), perhaps reflecting a belief among policymakers

1. Note that, with AK production, we would get a similar optimal tax formula but with additional cross-
elasticities

18



that unmodeled differences between equipment and structures are important for setting
tax rates that typically do not enter the Ramsey benchmark. For example, it may be that
equipment contributes to growth uniquely (DeLong and Summers 1991) or that structures
are non-tradeable across regions and hence easier to tax. Additionally, it may be that
there are heterogeneous elasticities of supply between equipment and structures even
though the Ramsey model assumes identically infinite elasticities of supply. Moreover,
tax changes may pass through prices in different ways for equipment and structures,
with correspondingly different effects on demand (Goolsbee 1998a). With that in mind,
I quantify optimal tax rates on equipment and structures for a planner taking account of
maintenance compared to a benchmark in which the current tax schedule is optimal for a
planner who does not account for maintenance.

In the model economy, production is Cobb-Douglas in equipment, structures, and
labor:

Y = KαE
E KαS

S H1−αS−αE .

As a reduced form way of capturing concerns about tax elasticities that may motivate
policymakers to set taxes at their current levels on equipment and structures, I assume
that the price of capital type i is given by

pi =

(
1

1 − τx
i

)ϕi

, 0 < ϕ < 1

Consequently, user cost changes correspondingly so that

FKi =
(1 − τx

i )
1−ϕi

1 − τc

(
rk − γi (1 + ωi)m−ωi

i

)
.

Larger values of ϕi imply that the effect of a larger investment subsidy is smaller in steady
state. We have little substantive evidence on the long-run supply elasticities and even less
on heterogeneity in those elasticities, I treat the parameters and functional form freely.
Acemoglu, Manera, and Restrepo (2020) and associated comments provide a useful dis-
cussion of the current state of the evidence on capital supply elasticities, concluding that
the relevant magnitudes are largely uncertain. With higher depreciation for equipment
and Cobb-Douglas production, a planner would prefer to first subsidize equipment un-
til marginal products are equalized between equipment and structures. Given that bias,
ϕE > ϕS for the current application. I discuss how I set these parameters later in the
section.
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Next, the government faces the following budget constraint:

G = τc ∑
i∈{E,S}

[ (
FKi − mi

)
Ki

]
− ∑

i∈{E,S}
τx

i Xiqi + τwwH,

where all notation carries from Section 2, i ∈ {E, S} denotes equipment and structures,
and τwwH is labor tax income, where the linear tax on labor is exogenous.2 Note that,
as in the rest of the paper, these can be amalgamated into a single asset-specific marginal
effective tax rate τi = 1 − 1−τc

1−τx
i

. In steady-state, investment is simply depreciation.
To close the model, there is a representative household with flow utility over con-

sumption and labor
u(c, H) = log c − χ log H

and the resource constraint is

∑
i∈{E,S}

(Mi + qiXi) + c + G ≤ KαE
E KαS

S H1−αE−αS

Parameterizations are standard and are in Appendix E.2. I calibrate initial tax rates to
match those in Barro and Furman (2018). Specifically, I set τc = 0.27 and the expensing
rates to 0.812 and 0.338 for each of equipment and structures so that τE = 6.5% and
τS = 19.7%. Although the federal corporate tax rate is 21% in practice, Barro and Furman
(2018) argue that 27% is more accurate after taking account of various state-level taxes.
I set the linear tax rate on labor exogenously to τw = 0.25. Equilibrium conditions are
exactly those in Section 3. With that, the procedure for computing optimal tax rates is
straightforward. There are two major steps.

1. Calibrate ϕE and ϕS in the benchmark NGM. Using a bisection method, find a pair
of values (ϕE, ϕS) such that current tax rates are optimal under the NGM. Here,
ωE = ωS = 0. There are infinitely many pairs for which current policy is optimal.
To fixate on one such pair, I set ϕS = 0.2 and then find ϕE such that the government
budget constraint holds and current tax rates are optimal. This results in ϕE = 0.54.

2. Compute optimal tax rates in the NGMM. For a pair of maintenance elasticities
(ωE, ωS), back out the value of γi such that steady-state depreciation matches its
historical average for each capital type.3 With those depreciation functions and us-

2. As long as the labor tax is exogenous in optimal policy, including it has no effect on the analytical
results. I include it here merely to reflect some important aspects of the tax system.

3. See Appendix E.2 for a full description of parameters together with a detailed explanation for how I
calculate γi.
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ing the pair (ϕE, ϕS), recompute optimal tax rates following the same steps as above.

Following this procedure guarantees that we compare optimal tax rates under the
current system as if policymakers consider everything except maintenance to an economy
in which policymakers do consider maintenance.

Figure 3: Optimal tax rates for each pair of maintenance elasticities in the grid W = [0, 1]× [0, 1].
The orange diamond represents current policy. Color intensity is determined by the equipment
maintenance elasticity.

I plot optimal tax rates on equipment and structures for each pair of maintenance
elasticities in the grid W = [0, 1]× [0, 1] in Figure 3. The optimal tax rates are defined as
τi = 1 − 1−τc

1−τx
i

. Maintenance elasticities may be larger than one, but in practice, this seems
unlikely and using a range from zero to one communicates the point adequately. In the
figure, the color intensity is determined by the magnitude of the equipment maintenance
elasticity ωE; dark blue indicates ωE near zero, dark red near one, and white around 0.5.
The orange diamond represents current policy rates. Current tax rates are only close to
optimal in the case where both maintenance elasticities are very small. Consequently, ex-
cept in the unlikely case that there is no maintenance channel at all, tax rates should be
higher on equipment and lower on structures. The lack of neutrality comes from the fact
that the higher quality of structures suppresses demand for maintenance from structures
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and conversely, that the relatively high inherent depreciation rate of equipment guaran-
tees a high demand for equipment maintenance when the maintenance channel exists.
Under Proposition 3, that suggests a bias in favor of taxing equipment compared to cur-
rent policy. For most of the plausible depreciation functions in W , quantitatively it trans-
lates to taxing equipment around 9-11% and structures between 10-15%.

At this stage, we have no confidence in any particular values for (ωE, ωS). The task
of the remainder of the paper is to place a point estimate on values for ωE and ωS, which
implies a point estimate on optimal tax rates in Figure 3. In the process, I show that this
point estimate also has strong implications for the positive quantitative analysis of tax
policy.

4 The Empirical Maintenance Channel

In this section, I estimate the maintenance elasticity by asset type. This requires some
creativity because a lack of available and high-quality data makes it challenging to di-
rectly estimate a depreciation function by simply regressing depreciation on maintenance.
There are three central issues. First, national accounting typically assumes a constant ge-
ometric depreciation rate and does not account for the extent to which a measured de-
preciation rate is a function of existing policy. This issue spills over into capital stock
measurement; if depreciation is mismeasured, then so are capital stocks. Second, mainte-
nance data are scarce, generally low-quality, and not detailed at the asset-specific level. To
the extent that there is variation, it is usually over the time series dimension. The paucity
of data follows from the fact that maintenance expenditures typically do not receive their
own accounting category and it can be difficult to distinguish maintenance from invest-
ment.4 Third, a significant amount of maintenance activity takes place outside the mar-
ketplace. Firms employ their own dedicated maintenance staffs and maintenance takes
up a substantial part of home labor.

In light of the difficulty with directly estimating depreciation functions, I use a struc-
tural approach based on the NGMM from Section 2. To indirectly estimate the mainte-
nance elasticity by asset type, I estimate the long-run response of the gross investment
rate for each asset type to permanent shocks to the relative price of investment using a
long panel of detailed industry data on relative prices and investment. The remainder
of this section proceeds in three steps. First, I discuss how a stochastic extension of the

4. Some industries report maintenance for regulatory reasons. For example, airlines have to report main-
tenance expenditures, but precisely because such expenditures are mandated, they do not typically reflect
economic behavior.
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NGMM allows us to indirectly estimate the maintenance elasticity. Second, I detail data
construction for the relevant relative price and investment levels together with how I es-
timate permanent shocks. Third, I present a novel estimation strategy based on smooth
local panel projections and discuss results.

4.1 The NGMM and an Indirect Approach to Estimating Maintenance

Elasticities

My approach draws from Fisher (2006) and Guerrieri, Henderson, and Kim (2020) by
using permanent shocks to the relative price of maintenance to investment to infer the
maintenance elasticity. I focus on long-run shocks for two reasons. First, we do not know
the short-run properties of the relationship between maintenance and investment. Mc-
Grattan and Schmitz Jr. (1999) argue that investment and maintenance are substitutes
and document that industries facing greater uncertainty maintain their capital at higher
rates. Maintenance behavior in the airline industry during the 2021-2023 supply chain cri-
sis supports the idea that maintenance and investment are substitutable. Airlines, facing
long delays on investments in new planes, strenuously maintained their aircraft (Pfeifer
2023). On the other hand, Boucekkine, Fabbri, and Gozzi (2010) argue that maintenance
and investment are complementary in the short-run and, to the extent that data are us-
able, it supports their story. Although the disagreement is perhaps over maintenance and
investment levels rather than rates, it remains unresolved and difficult to resolve with the
minimal data we have on maintenance at any frequency. Second, the NGMM analyzed
in this paper does not include investment or maintenance frictions—both of which are
practically plentiful— so the model is not well-suited for short-run analysis. However,
the NGMM does make a clear and intuitive prediction about the relationship between
investment and maintenance rates in the long run. Proposition 1 states that the elasticity
of the gross investment rate with respect to a change in the relative price of maintenance
is given by ωi

1+ωi
. This follows directly from the fact that in the NGMM, steady-state gross

investment equals gross depreciation, i.e.,

Xi

Ki
= δi(mi) = γi

(
Vi

1
ωiγi

) ωi
1+ωi

, (16)

where Vi ≡ qi(1−τc)
pi(1−τx

i )
is the steady-state after-tax relative price of maintenance to invest-

ment in asset type i. Consequently, using permanent shocks to the relative price is conve-
nient because it allows us to sidestep issues about short-run dynamics by simply making
a statement about what should happen in the long-run.
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Toward implementing the long-run approach and build on the identification scheme
of Fisher (2006), I alter the NGMM to include stochastic processes. Suppose a firm pro-
duces according to

Yt = zt (χtHt)
1−Ω

N

∏
i=1

Kαi
i,t

with ∑i αi = Ω < 1. Hicks-neutral productivity follows the stochastic process

zt = zt−1 + εz,t, εz,t ∼ N (0, σz),

and Harrod-neutral productivity follows

χt = χ + εχ,t, ϵχ,t ∼ N (0, σχ).

Harrod-neutral productivity shocks capture labor demand shocks. Following the nota-
tion above, let the inverse price of investment be given by Vi, which follows a stochastic
process given by

Vi,t = Vi,t−1 + εi,t, εi,t ∼ N(0, σi).

The first-order condition for maintenance becomes, after rearranging,

mi,t =

(
Vi,t

1
ωiγi

) −1
1+ωi

.

In steady-state, this becomes (16), so that a unit shock to Vi yields the required long-run
elasticity.

Proposition 5. In the long run, a positive shock to the relative price of maintenance to investment
in asset type i causes productivity and hours to permanently rise with no effect on other relative
prices. A positive productivity shock has no effect on relative prices but causes hours to rise in the
long run. A positive shock to hours has no long-run effect on relative prices or productivity.

Proposition 5 implies a parsimonious framework for analyzing substitutability be-
tween maintenance and investment in the long run, which in turn yields maintenance
elasticities. Because there are multiple capital types, that also implies the overidentify-
ing restrictions that shocks to Vi cannot affect Vj in the long-run and hence cannot affect
the gross investment rate in asset type j. Given data on investment rates, relative prices,
productivity, and hours, we can infer maintenance elasticities by examining the long-run
response of the gross investment rate to a relative price shock. In the following subsec-
tion, I discuss how to implement that in practice.
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4.2 Data and Shock Construction

The previous subsection suggests that if we identify permanent shocks to relative prices,
productivity, and labor supply, then we can infer maintenance elasticities. Toward that
end, I put together a panel dataset on prices, productivity, and capital stocks on six-digit
NAICS industries in the manufacturing sector at an annual frequency using data from the
Bureau of Economic Analysis (BEA), the NBER-CES dataset of the Annual Survey of Man-
ufactures (ASM), and the Federal Reserve Bank Estimates of Manufacturing Investment,
Capital Stock, and Capital Services produced under the industrial capacity program. The
final sample is a balanced panel of 335 industries from 1972-2018. With those data, I
construct industry-specific productivity shocks, labor supply shocks, and asset-specific
shocks to the relative price of maintenance following the methodology of Fisher (2006)
for equipment and structures. Using permanent shocks to relative prices as instruments
for relative prices, we can recover the maintenance elasticity by using a panel local projec-
tions framework. Following Boehm, Levchenko, and Pandalai-Nayar (2023), the long-run
elasticity is where the point estimate settles down after a sufficiently long period of time.

Data Construction

In this subsection, I briefly discuss data construction. See Appendix B for more detailed
information. The relative price of maintenance to investment for asset i in industry j at
time t is

Vi,j,t =
qj,t

pi,j,t

1 − τc
t

1 − τx
i,j,t

,

where qj,t is the pre-tax price of maintenance, pi,j,t is the pre-tax price of investment, τc
t is

the corporate tax rate, and τx
i,j,t collects asset-i-by-industry-j specific tax provisions like the

investment tax credit and tax depreciation allowances. For the price of maintenance, I use
the ASM to construct a unit labor cost index specific to each industry but common across
asset types. Maintenance is largely an internal operation so an internal indicator of labor
costs the relevant indicator of maintenance costs.5 Consequently, the price of maintenance
is common across asset types within each industry. For pi,j,t, the price of investment in
asset i, I construct a weighted investment deflator in each capital type using detailed
data from the BEA at the three-digit NAICS level. Each three-digit NAICS price is then
matched to its more disaggregated six-digit NAICS counterpart. I construct tax policy

5. In principle, a weighted metric of internal and external labor, capital, and materials cost would be
superior. However, there is currently no clear way to do this. As a result, some measurement error surely
enters the result through this channel.

25



data by hand using a variety of different sources. See Appendix B.2 for more details.
Next, we require a measure of the gross investment rate,

xi,j,t =
Xi,j,t

Ki,j,t
.

Both gross investment and the capital stock of asset i in industry j come from the Federal
Reserve Bank Estimates of Manufacturing Investment, Capital Stock, and Capital Services
produced under the industrial capacity program.6 Finally, productivity and hours per
worker come from the ASM.

Shock Construction

The remainder of this subsection discusses how I construct permanent shocks to the rela-
tive price of investment, productivity, and hours. Appendix B.3 contains a more detailed
description.

Fisher (2006) and a subsequent literature on investment-specific technology (IST) shocks
identifies the latter along with productivity and labor supply shocks by imposing long-
run restrictions. From the perspective of earlier iterations of the neoclassical model with
IST shocks like Greenwood, Hercowitz, and Huffman (1988) and Greenwood, Hercowitz,
and Krusell (2000), a permanent shock to the relative price of investment to consumption
has a permanent effect on the relative price, productivity, and hours. A shock to produc-
tivity cannot affect relative prices but does permanently affect hours, while a shock to
hours can only affect hours. Clearly, this is analogous to Proposition 5, in which the only
difference has to do with the denominator of the relative price. Whereas for the NGM,
the relevant relative price is investment over consumption, here it is maintenance over
investment.

To impose the long-run restrictions of Proposition 5, I follow an analogous strategy
to Fisher (2006) and Shapiro and Watson (1988) by exploiting time series properties of
the price, productivity, and hours variables. Note that a differenced stationary variable
cannot have a long-run effect in levels on a stationary variable; by construction the effect
of an innovation to the differenced stationary variable on a stationary variable is tran-
sient. Permanent shocks to the relative price of maintaining equipment are standardized

6. The NBER-CES variant of the ASM also puts together data on capital stocks. I prefer the FRB dataset
because it uses a more sophisticated perpetual inventory method and price data than the NBER-CES variant
by assuming the efficiency of assets is non-constant and using asset-by-industry specific deflators rather
than aggregate deflators.
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residuals of the following two-way fixed effects regression up to p lags

∆ log VE,j,t =αj + Tt +
p

∑
s=1

βVE ∆ log VE,j,t−s +
p−1

∑
s=0

βVS ∆2 log VS,j,t−s

+
p−1

∑
s=0

βProd∆2Prod.j,t−s +
p−1

∑
s=0

βHrs∆Log Hrsj,t−s + µE,j,t.

(17)

αj is an industry fixed effect, Tt is a time fixed effect, log VE,j,t is the log relative price of
maintenance in equipment, log VS,j,t is the log relative price of maintenance in assets other
than equipment, Prod.j,t is a log-transformed index of labor productivity in sector j, and
Log Hrsj,t is a log-transformed index of hours per worker in sector j. Following Shapiro
and Watson (1988), I instrument for overdifferenced variables with their stationary lags
and for stationary variables with their lags. The residuals µj,t scaled by the industry-
specific standard deviation of µj,t then form the industry-specific shocks to the relative
price of investment. Proposition 5 tells us that, in theory, shocks to other relative prices,
productivity, or hours should have no effect. Consequently, in (17), all of those variables
are differenced once from their stationary form.

I run a similar regression to produce permanent shocks to relative prices for structures.
Next, I obtain productivity shocks by running a similar regression, allowing all three
relative prices to affect productivity permanently, and including the estimated relative
price shocks in the regression. A similar procedure yields shocks to hours. Following this
procedure yields industry-specific shocks to the relative price of maintaining each asset,
productivity, and hours. The instrument I use in practice uses p = 2 lags. Further details
are in Appendix B.3.

4.3 Estimated Elasticities

This subsection discusses the final estimation steps for inferring the maintenance elas-
ticities and presents results. My approach relies on local projections (LP). For up to h
horizons, I estimate, for each capital type i in industry j at time t,

log xi,j,t+h − log xi,j,t−1 = αj + Tt + βi,h log Vi,j,t + Xi,j,tζi,h + ηi,j,t+h, (18)

where αj is an industry fixed effect, Tt is a time fixed effect, and Xi,j,t is a vector of controls.
The regression computes the price elasticity of the gross investment rate xi,j,t+h in asset
i in industry j for up to h horizons ahead given a one percent increase in the industry-
j and asset-i relative price of maintenance, Vi,j,t. I instrument for the relative price of
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maintenance with the industry-by-asset permanent shocks obtained in the previous sub-
section. I also control for productivity growth and growth in hours, instrumenting for
both with the industry-specific productivity and labor supply shocks. Additionally, I in-
clude two lags each of the asset-specific log gross investment rate, the log relative price
of investment, and productivity growth, and hours growth.7 Because the time dimension
is large—greater than forty years for all capital types—the extent of Nickell bias is small,
though it is increasing in the forecast horizon.

However, rather than rely on standard LP, I develop a new method to estimate the
long-run effects of shocks with panel data. While a key benefit of the atheoretical im-
pulse responses generated by LPs is their unbiasedness, the estimator often generate large
and theoretically unappealing fluctuations in their impulse responses. Toward a middle
ground between the theoretically appealing but biased impulse responses from SVARs
and the theoretically unappealing but unbiased impulse responses from LPs, Barnichon
and Brownlees (2019) develop smooth local projections (SLP) by making the local projec-
tion impulse response a smooth function of the forecast horizon through B-splines. SLP is
often preferable to standard LP because it disciplines the IRF to fit a polynomial of some
degree chosen by the researcher.8 I extend the methodology of Barnichon and Brownlees
(2019) to panel data, developing smooth local projections for panel data (SLPP) to esti-
mate (18). See Appendix D for a full description of how the SLPP estimator works along
with results from a standard LP estimator.

I use the SLPP estimator to penalize the impulse response to a line for each capital
type for up to ten years and plot the coefficients βi,h for each of equipment and structures
in Figures 10a and 10b together with a 90% wild cluster bootstrap confidence interval
with 2500 replications. The IRFs are statistically distinguishable from zero for all hori-
zons for equipment, while results for structures become slightly insignificant around year
ten. From year seven onward, the equipment maintenance elasticity stabilizes to around
0.4, while it stabilizes on structures around 0.7 after a permanent relative price shock.
In Appendix C, I include additional results varying both lag length and the polynomial
order. After estimating the coefficient βi,h on the relative price of investment, I infer the

7. Montiel Olea and Plagborg-Møller (2021) show that this is sufficient to account for non-stationarity
with local projections, so I do not bother with unit root or cointegration procedures. Because the relative
price and the investment rate are both persistent series, it is important to include lags of both. Indeed, for
all capital types, there is surely some adjustment cost, so inclusion of lags is critical (Eberly, Rebelo, and
Vincent 2012; Caballero and Engel 1999).

8. Li, Plagborg-Møller, and Wolf (2021) show that, in a time series context, standard LP is unbiased but
inefficient enough that applied researchers should avoid using them.
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maintenance elasticity for capital type i at each horizon h by estimating

ω̂i,h =
β̂i,h

1 − β̂i,h

and infer uncertainty around the estimate with a wild cluster bootstrap with 2500 repli-
cations. I plot the resulting estimates for the maintenance elasticities together in Figure
4, while estimates along with standard errors are in Figures 11a and 11b. The estimates
are statistically significant for equipment at all horizons and nearly the same holds for
structures.9
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Figure 4: Maintenance elasticities for each capital type.

Given point estimates for depreciation functions for equipment and structures, we
can begin to analyze with greater precision how accounting for the maintenance channel
affects the positive and normative consequences of tax policy. I do that in the following
section.

9. Aside from the fact that substantial measurement error is surely in the estimates, it must be noted that
measurement of the gross investment rate itself is inconsistent with the thrust of this paper. My main argu-
ment is that depreciation is a function of policy, which implies that investments should not be depreciated
with constant depreciation rates in the face of changing policy. However, these measures of the capital stock
do rely on constant depreciation rate, which introduces a further source of measurement error. Another is-

sue is that doing inference with the quantity β̂i,h
1−β̂i,h

means that standard errors blow up as β̂i,h approaches

one. This does not happen in the main specification but may happen as the polynomial order increases
since the LP estimate of the structures βi,h approaches one at horizons two and three.
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5 Quantifying the Importance of Maintenance

In this section, I carry out two counterfactual quantitative exercises. First, I quantify the
estimated effect of the 2017 Tax Cuts and Jobs Act with the NGMM and compare it to
estimates made with the benchmark NGM from Barro and Furman (2018). Second, I
quantify optimal tax rates on equipment and structures.

5.1 Positive: The 2017 Tax Cuts and Jobs Act

The 2017 Tax Cuts and Jobs Act (TCJA) remains the largest tax reform of the postwar
era. It substantially cut corporate tax rates from 35% to 21% and altered tax wedges
between assets; lawmakers gave equipment 100% bonus depreciation and altered the cost
of capital for different types of intangibles. At the same time, policymakers introduced
new measures to combat profit shifting from tax havens abroad. For a full description of
the various changes, see Barro and Furman (2018) and Gale et al. (2018).

Here, I focus on the impact of considering maintenance on the predicted long-run
effects of the domestic tax changes. Barro and Furman (2018) provide the ideal setting
for doing so; they analyze the long-run effects of TCJA through the lens of a standard
neoclassical model with heterogeneous capital. The Barro and Furman analysis yields
promising results for the TCJA, predicting large increases in the capital-labor ratio and,
as a direct consequence, significantly higher output per capita. Their approach amounts
to simply computing the analytical steady-state under different capital tax policies and
examining the results while implicitly assuming that the demand for maintenance is per-
fectly inelastic and zero. Thus, it is a convenient setting to add endogenous maintenance
and compare the quantitative predictions of both models.

Barro and Furman (2018) feature five types of capital: equipment, residential struc-
tures, nonresidential structures, R&D intellectual property, and other intellectual prop-
erty. Using income share data, they then calibrate a Cobb-Douglas production func-
tion with those five capital types plus labor for the corporate and passthrough sectors.
Comparative statics on the cost of capital for each capital type then furnish predictions
about the capital-labor ratio, productivity, and output for the corporate sector and the
non-corporate sector. Aside from the depreciation functions, I rely on the exact same cali-
brations as Barro and Furman. For this analysis, I use the estimated depreciation function
for equipment and the estimated depreciation function for structures for non-residential
structures and residential structures calibrated such that pre-reform user cost is the same
for both the NGM and the NGMM. See Appendix E.2 for more details on how I set the
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level parameters given equipment and structures elasticities of 0.4 and 0.7, respectively. I
assume, somewhat conservatively, that the intangible maintenance elasticity is the same
as equipment at 0.4. The latter assumption may be improper, but the goal here is simply
a back-of-the-envelope estimate of how much it matters to include maintenance.

Corporate Passthrough

80

85

90

95

100

90.4

83.682.7

77.6

K/L NGMM
K/L NGM (%)

BF Dep. Rates
BLT Dep. Rates

Figure 5: The predicted effect of the TCJA on capital-labor ratios under the NGMM as a share
of the predicted effect under the NGM. The BF depreciation rates come from Barro and Furman
(2018) and the BLT depreciation rates come from Baldwin, Liu, and Tanguay (2015).

In Figure 5, I plot the predicted effect of the TCJA on the capital-labor ratio using
the NGMM as a share of the predicted effect of the NGM, where the latter predictions
come from Barro and Furman (2018). I plot the NGMM predicted K/L ratio for two sets
of depreciation rates. The first, denoted BF, uses depreciation rates from Barro and Fur-
man, which in turn come from the BEA. The second set of depreciation rates comes from
Canada, denoted BLT (Baldwin, Liu, and Tanguay 2015). The key difference is that the lat-
ter are roughly twice as large for each asset class. I prefer the Canadian depreciation rates
because they are more rigorously estimated; whereas many of the BEA depreciation rates
were estimated in the 1970s and 1980s, Canadian depreciation rate estimates are modern,
updated regularly, and use extensive microdata on capital resales.10 Because the capital-
labor ratio maps easily to productivity and output, I simply report the capital-labor figure
for each of the corporate sector and the non-corporate sector. In sum, the NGMM predicts
the TCJA effect on the capital-labor ratio to be about 80-90% as large as the standard NGM
predicts when using the BEA depreciation rates and about 75-85% as large using the BLT

10. For that reason, the BEA and BLS are strongly considering updating their methods in line with
Canada’s (Giandra et al. 2022). In fact, usage of Canada’s depreciation rates implies a U.S. net capital
stock approximately 60% as large as claimed by the BEA, something not widely appreciated.
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depreciation rates. The difference between the corporate and passthrough sectors largely
comes from the structures share, which is much larger in the passthrough sector.

Another way to interpret the magnitude of the result is through the capital share. In
the baseline calibration from Barro and Furman (2018), which I use, the capital share is
calibrated to be 0.38. In the steady-state NGM, the capital share entirely determines the
elasticity of the capital stock with respect to changes in taxes. One could equivalently
achieve the results of the NGMM by considering instead an aggregate production with a
capital share about 15% smaller using the BEA depreciation rates or about 20% smaller
using the BLT depreciation rates.

5.2 Normative: Optimal Tax Rates

In Section 3, I showed that accounting for maintenance with equipment and structures
suggests the current tax schedule is overly privileged in favor of equipment for a range
of plausible depreciation functions, with the degree of privilege determined by the pair
of maintenance elasticities (ωE, ωS). Now, given the point estimates in Section 4, I zoom
in on the most likely candidate pair ωE = 0.4 and ωS = 0.7. The key result is in Fig-
ure 6. Compared to current tax rates, consideration of the maintenance channel pushes
the optimal rates toward being more uniform. Under the calibrations from the empirical
section, the demand for maintenance is both higher and more elastic for equipment than
structures, which under the optimal tax theory derived in Section 2 implies that optimal
tax rates should be pushed higher on equipment and reduced on structures. However,
even though the optimal tax on structures is 1.5 times larger than on equipment rather
than three times as in current practice is not necessarily a tremendous indictment of cur-
rent policy. Theory and evidence combine to give a minor reform to how the government
taxes equipment and structures.

Adding more types of capital, altering the functional forms for production, deprecia-
tion, or changing the way current policy optimality is ensured would surely change the
results quantitatively and perhaps qualitatively. But focusing here on two types of capital
and the simplest forms allow for maximal transparency while making the point that con-
sideration of the maintenance channel should point policymakers toward significantly
updating toward changing tax rates to reflect that. The evidence here indicates that a
move toward the Diamond and Mirrlees (1971) uniform tax standard would be ideal.
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Figure 6: Current tax rates compared to optimal tax rates on equipment and structures when
accounting for maintenance.

6 Concluding Remarks

In this paper, I highlight an understudied channel in the transmission of capital tax pol-
icy. To my knowledge, the theoretical and empirical results are completely unknown in
the otherwise expansive literature on both positive and normative aspects of tax policy.
Although I impose additional conditions for the sake of clarity, there are really only three
that matter. First, the decision to maintain old capital must be an economic one. That
is, the demand curve for maintenance must have some curvature. Second, depreciation
technologies must vary between at least two capital types. In other words, at least one
capital type must differ from another in its associated demand for maintenance. Finally,
maintenance and investment must not be treated identically in the tax code. Although
that would be efficient, tax policy generally does not treat maintenance and investment
equally. Together, these distinguish the heterogeneous capital NGMM from its traditional
counterpart, leading to the relevant positive and normative conclusions together with the
subsequent empirical results.

More work needs to be done by economists on rigorously evaluating the empirical
maintenance demand curves by capital type, which requires, in turn, that government
agencies take a more active role in making maintenance data available to them. Given the
groundwork laid here and in prior work by McGrattan and Schmitz Jr. (1999) and Gools-
bee (2004), the case for public finance and macroeconomists to undertake these studies is,
I think, too big to ignore.
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A Model

A.1 Depreciation Measurement Error

The degree of potential for measurement error is useful to illustrate numerically. Suppose there are two

capital types: E and S. Depreciation functions are parameterized by γE = γS = 0.01 with ωE = 1 and

ωS = 0.1. Hence type E has a higher maintenance elasticity. Suppose depreciation was initially measured

when τE = τS = 50%. Let measurement error for capital type i = E, S be defined as

Measurement Errori = 100 ×
(

γi

(
1 − τi
γiωi

) ωi
1+ωi − γi

(
1 − 0.5

γiωi

) ωi
1+ωi

)
.

A measurement error of two would correspond to actual depreciation two percentage points higher than

the official depreciation rate. In Figure 7, I plot measurement error curves for both capital types as a function

of the tax rate τi. Larger elasticities correspond to larger measurement error.
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Figure 7: Measurement error curves for differing values of the maintenance elasticity, holding
quality fixed at γE = γS = 0.01.

The quality of capital amplifies the degree of measurement error for a given maintenance elastic-

ity. Now suppose the depreciation functions are parameterized by γE = 0.05 and γS = 0.005 with

ωE = ωS = 1. This implies capital type E is lower quality and hence depreciates faster. In Figure 8, I

plot measurement error curves for both capital types as a function of the tax rate τi. Clearly, the extent of

measurement error is more serious for lower quality capital. When the marginal effective tax rate is zero
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percent, measurement error is five for capital type E compared to two for capital type S. Practically speak-

ing, this may be an important issue for equipment and structures, which have quite different depreciation

rates and have both seen large declines in marginal effective tax rates since initial measurement. In quanti-

tative models featuring depreciating capital, failure to account for this may lead to incorrect conclusions.

0.2 0.4 0.6 0.8
−10

−5

0

5

Tax Rate τi

Measurement Error

γE = 0.05
γS = 0.005

Figure 8: Measurement error curves for differing values of capital quality, holding fixed the main-
tenance elasticity at ωE = ωS = 1.

A.2 Ramsey Planner’s Problem

The planner’s Lagrangian is given by

L =
∞

∑
t=0

βt

{
u(ct)− v(Ht) (19)

+ θt

[
N

∑
i=1

(
τc

t Ki,t

(
FKi,t − mi,t

)
− τx

i,t (Ki,t+1 − (1 − δi(mi,t+1)Ki,t)
)
− Gt

]
(20)

+ Ψt

[
F(K1,t, . . . , KN,t, Ht)−

N

∑
i=1

[
Mi,t +

[
Ki,t+1 − (1 − δi(mi,t))Ki,t

]]
− ct − Gt

]
(21)

+
N

∑
i=1

ϕi,t

[
βu′(ct+1)

{
(1 − τc

t+1)FKi,t+1 +
(
1 − τx

i,t+1
) (

1 − δi(mi,t+1) + δ′i(mi,t+1)mi,t+1
) }

− u′(ct)(1 − τx
i,t)
]

(22)

+
N

∑
i=1

µi,t

[
1 − τc

t
1 − τx

i,t
+ δ′i(mi,t)

]
(23)

+ ϑt

[
FHt u

′(ct)− v′(Ht)
]}

, (24)

38



where choices of capital, maintenance, labor, consumption, and asset-specific taxes determine the solution

to the planner’s problem.

A.3 Proof of Proposition 3

Proposition 3. All else equal, the optimal steady-state tax distortion on capital type i is increasing in its maintenance

elasticity and decreasing in capital quality.

It is most convenient to formulate the problem as if the government chooses the sequence τxτxτx through

its choice of maintenance. From the private first-order condition on maintenance, we have that −δ′i(mi,t) =

1−τc

1−τx
i,t

, so

τx
i,t =

1 − τc

δ′i(mi,t)
+ 1.

Using this, we can substitute for the tax on investment everywhere, so that the optimal choice of mainte-

nance by the planner pins down the optimal tax. After substituting the law of motion for each capital type

in, the government budget constraint becomes

Gt =
N

∑
i=1

[
τc
(

FKi,t − mi,t

)
Ki,t − τx

i,t (Ki,t+1 − (1 − δi(mi,t))Ki,t)

]

=
N

∑
i=1

[
τc

t

(
FKi,t − mi,t

)
Ki,t −

(
1 +

1 − τc
t

δ′i(mi,t)

)
(Ki,t+1 − (1 − δi(mi,t))Ki,t)

]
(25)

=
N

∑
i=1

[
Ki,t

(
τc

t

(
FKi,t − mi,t

)
+ (1 − τc

t )
mi,t

ωi
− δi(mi,t) +

(
1 +

(1 − τc
t )

δ′i(mi,t)

))
−
(

1 +
(1 − τc

t )

δ′i(mi,t)

)
Ki,t+1

]

The same substitution can be made in each Euler equation to yield, after rearranging,

u′(ct)

(
1 − τc

t
−δ′i(mi,t)

)
= βu′(ct+1)

[ (
1 − τc

t+1
)

FKi,t+1 −
1 − τc

t+1
δ′i(mi,t+1)

− (1 − τc
t+1)mi,t+1

(
1 +

1
ωi

)]
. (26)

After replacing the government budget constraint and the household Euler equation with (25) and (26),

the planner chooses sequences of maintenance, capital, consumption, and labor to maximize utility. To

complete the proof, we only require first-order conditions for maintenance and capital. Those equilibrium

conditions are given in (27) and (28), respectively.

u′(ct)(1 − τc
t )

Ki,t

(
ϕi,t−1

(
1 + ωi

ωi
−

δ′′i (mi,t)

δ′i(mi,t)2

)
+ ϕi,t

δ′′i (mi,t)

δ′i(mi,t)2

)
= −Ψt

(
1 + δ′i(mi,t)

)
+ θt

(
−τc

t +
1 − τc

ωi
− δ′i(mi,t) +

(1 − τc
t )δ

′′
i (mi,t)

δ′i(mi,t)

1
Ki,t

(Ki,t+1 − Ki,t)

) (27)
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Ψt + θt

(
1 +

1 − τc
t

δ′i(mi,t)

)
=β

{
θt+1

[
τc

t+1FKi,t+1 − δi(mi,t+1) + δ′i(mi,t+1)mi,t+1 +

(
1 +

1 − τc
t+1

δ′i(mi,t+1)

)

−
(1 − τc

t+1)δ
′′
i (mi,t + 1)

δ′i(mi,t)

mi,t+1

Ki,t+1
(Ki,t+2 − Ki,t+1) +

N

∑
j=1

τc
t+1FKj,t+1Ki,t+1 Kj,t+1

]

+ Ψt+1

(
FKi,t+1 + 1 − δi(mi,t+1) + δ′i(mi,t+1)mi,t+1

)
+

u′(ct+1)(1 − τc
t+1)mi,t+1

Ki,t+1

[
ϕi,t

(
1 + ωi

ωi
−

δ′′i (mi,t+1

δ′i(mi,t+1

)

+ ϕi,t+1

(
δ′′i (mi,t+1

δ′i(mi,t+1

)]
+

N

∑
j=1

ϕj,tu′(ct+1)(1 − τc
t+1)FKj,t+1Ki,t+1

+ ϑt+1u′(ct+1)FHt+1Ki,t+1

}

(28)

Substituting (27) into (28) yields

Ψt + θt

(
1 +

1 − τc
t

δ′i(mi,t)

)
=β

{
θt+1

[
τc

t+1r̂i,t+1 − δi(mi,t+1) +
(1 − τc

t+1)mi,t+1

ωi
+

(
1 +

1 − τc
t+1

δ′i(mi,t+1)

)

+
N

∑
j=1

τc
t+1FKj,t+1Ki,t+1 Kj,t+1

]

+ Ψt+1

(
FKi,t+1 + 1 − δi(mi,t+1)− mi,t+1

)
+

N

∑
j=1

ϕj,tu′(ct+1)(1 − τc
t+1)FKj,t+1Ki,t+1

+ ϑt+1u′(ct+1)FHt+1Ki,t+1

}
,

(29)

where r̂i ≡ FKi − mi. In steady-state, this becomes

θ

(
1 +

1 − τc

δ′i(mi)

)(
1
β
− 1
)
+ Ψ

(
1
β
− FKi − 1 + δi(mi)− mi

)
=

N

∑
j=1

ϕju′(c)(1 − τc)FKjKi

+ θ

(
τc r̂i − δi(mi) +

(1 − τc)mi
ωi

+
N

∑
j=1

τcFKjKi Kj

)
+ ϑu′(c)FHKi .

(30)

From household optimality,
1
β
=

1 − τc

1 − τx
i

FKi + 1 − δi(mi) + δ′i(mi)mi,

so

Ψ
(

1
β
− FKi + δi(mi) + mi

)
= −Ψτi r̂i.
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Recall that τi is the marginal effective tax rate on capital type i. Using the same substitution,

θ

[(
1 +

1 − τc

δ′i(mi)

)(
1
β
− 1
)
− τc r̂i + δi(mi)−

(1 − τc)mi
ωi

]
= −θτi r̂i.

Consequently, we have

−(θ + Ψ)τi r̂i =
N

∑
j=1

(
u′(c)ϕi(1 − τc) + θτcKj

)
FKjKi + ϑu′(c)FHKi (31)

To make more progress, note that in steady-state, the optimality condition for maintenance can be written

as

ϕiu′(c)(1 − τc) =Ki
ωi

1 + ωi

(
θ

(
1

ωi
− τc

(
1 + ωi

ωi

)
− δ′i(mi)

)
− Ψ(1 + δ′i(mi))

)
(32)

Substituting back in to (31),

−(θ + Ψ)τi r̂i =−
N

∑
j=1

Ψ
(
1 + δ′i(mi)

) ωj

1 + ωj
FKjKi Kj +

N

∑
j=1

θ
ωj

1 + ωj

(
1

ωj
− δ′i(mi)

)
FKjKi Kj + ϑu′(c)FHKi

=− (Ψ + θ)
ωi

1 + ωi

FKi

εKii

τi − Ψ
N

∑
j=1
j ̸=i

ωj

1 + ωj

FKj

εKji

τj + θ
N

∑
j=1
j ̸=i

FKi

εKji

+ ϑu′(c)FHKi

Manipulate this expression to yield

τi =

(
r̂i

FKi

εKii −
ωi

1 + ωi

)−1
εεεi, (33)

where

εεεi =
N

∑
j=1
j ̸=i

ωi
1 + ωi

εKii

εKji

FKj

FKi

τj −
1

θ + ψ

(
θ

N

∑
j=1

εKii

εKji

FKj

FKi

+ ϑu′(c)
εKii

εHKi

FH
FKi

)

is a function of cross-elasticities. This gives the required result.

B Data
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B.1 Data Construction

To estimate the maintenance elasticity for equipment, structures, and software, I pull data from three dif-

ferent sources: the Annual Survey of Manufactures (compiled by NBER-CES), the Federal Reserve Board’s

Manufacturing Investment and Capital Stock data, and the BEA’s detailed data on fixest assets by type by

industry. The former two are organized according to the 2012 NAICS industry classification at the six-digit

NAICS level.11 I use the latter exclusively for data on gross investment rates. The former only includes

net investment in plant and equipment. However, the ASM has detailed information at the industry level

on hours, the number of production workers, prices, and the value of shipments. Below, I document the

variables and their sources:

• Gross investment rate (FRB). I take the period t value of gross investment Xi,t for asset i and divide

it by the lagged estimate of the capital stock for asset i. Winsorized by year at the 1% and 99% level.

• Price of maintenance (ASM). Because maintenance is typically quite labor-intensive, I identify it

with industry-specific unit labor cost. I construct this measure by first deflating the nominal value

of shipments with the price deflator for that industry’s shipments and scaling the resulting value of

real shipments with the number of production workers. Next, I created an industry-specific output

per worker index using 2012 as base year. Dividing this through by an hours per production worker

index (also with base year 2012) yields labor productivity. Finally, I construct an index of nominal

labor costs obtained by dividing the total wage bill by the number of production workers. Dividing

this index by labor productivity corresponds to unit labor cost. I winsorize this variable by year at

the 1% and 99% levels.12

• Price of investment (BEA). Using detailed data on investment from the BEA, I compute a weighted

price of investment for each of equipment and structures for each manufacturing industry at the

three-digit level. For each asset type, I first obtain deflators by dividing the nominal series by its real

counterpart. Then, for each industry, I find investment weights within each asset type and compute

an industry investment price for each asset by multiplying the weights by the corresponding price

series and summing. I then match each three-digit NAICS price to the more detailed six-digit NAICS

industry.

11. Results change very little if instead SIC codes are used. I use NAICS codes to avoid the somewhat
arbitrary choice of assigning investment to old industry codes. Whereas categories like hours, employ-
ment, and value added have weighted bridges constructed by the US Census Bureau, investment does not.
Consequently, it would be a difficult task to confidently assign investment to different industry codes.

12. I also winsorize all growth rates at the 1% and 99% level.
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• Relative price of maintenance to investment for asset i. Taken as dividing the price of maintenance

(identified with unit labor cost) with the asset-specific price (defined in the main text). I then multiply

this relative price by the standard user cost tax term 1−τc
t

1−τx
i,j,t

, where τx
i,j,t collects asset- and industry-

specific tax provisions like the investment tax credit and tax depreciation. I describe where these

values come from in Appendix B.2. I remove all values that have a relative price of maintenance

to investment greater than fifteen. These constitute large outliers and imply a very steep drop in

relative prices in the early sample period. To construct the instrument, I winsorize growth rates in

the relative price of maintenance by year at the 2% and 98% levels. After winsorization, I reconstruct

an index of the relative price of investment from the winsorized growth rates.

• Productivity growth (ASM). See the description in the price of maintenance variable. I log-difference

the level of labor productivity. The ASM provides four- and five-variable TFP measures which are

highly correlated. In the actual regressions, I demean productivity growth. This variable is win-

sorized by year at the 2% and 98% levels.

• Hours (ASM). I create an index of hours per production worker with 2012 as the base year and log-

transform. The change in hours—which enters all regressions demeaned—is winsorized by year at

the 2% and 98% levels.

• Employment (ASM). Certain specifications control for industry size via employment. This variable

is simply the logarithm of the employment variable in the ASM.

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Year 13,760 1,997.000 12.410 1,976 1,986 2,008 2,018
Equip. Invest. Rate 13,760 0.078 0.035 0.0004 0.055 0.095 0.599
Struct. Invest. Rate 13,760 0.026 0.025 0.000 0.011 0.033 0.587
Inv. Rel. Price Equip 13,760 1.395 0.640 0.424 1.025 1.545 8.248
Inv. Rel. Price Struct 13,760 1.782 0.969 0.469 1.086 2.129 10.763
Hours Growth 13,760 0.00003 0.034 −0.292 −0.017 0.018 0.310
Log Emp. 13,760 3.241 0.915 −0.105 2.639 3.857 6.463
Productivity Growth 13,760 0.019 0.070 −0.320 −0.020 0.058 0.370
Equip Shock 13,760 −0.000 0.988 −3.825 −0.615 0.618 4.334
Struct Shock 13,760 0.000 0.988 −3.890 −0.599 0.604 4.453
Productivity Shock 13,760 −0.000 0.988 −4.607 −0.592 0.606 4.426
Hours Shock 13,760 0.000 0.988 −5.149 −0.583 0.607 4.639

Table 1: Summary Statistics
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B.2 Tax Policy Construction

Toward creating a database of industry-by-asset-specific marginal effective tax rates (METR) on corporate

capital, I combine data from the BEA and the IRS. Tax rates may differ between industries because there are

differences in how assets are taxed and the mix of assets owned by industries may differ. Consequently, as

long as we know who owns which assets and the tax rates on those assets, we can construct an industry-

specific marginal effective tax rate. The Fixed Asset Tables from the BEA are convenient for this purpose

for two reasons. First, Section 2 of the Fixed Asset tables contains data on 36 physical assets which are

relatively easy to map to tax policy, make up the vast majority of physical investment, and can be catego-

rized as either equipment or structures. I focus on these assets over the period 1971-2021, which spans the

Asset Depreciation Range (ADR) System from 1971-1981, the Accelerated Cost Recovery System (ACRS)

from 1982-1986, and the Modified Accelerated Cost Recovery System from 1987-2021. Second, the under-

lying detailed estimates for nonresidential investment can be mapped from BEA industries into three-digit

NAICS codes. The BEA provides a bridge for this purpose.

There are three steps to constructing industry-specific marginal effective tax rates:

1. Calculate asset-specific marginal effective tax rates τa
i,t for sub-asset i in the broader class of assets

a ∈ {Equipment, Structures}.

2. For each industry j, compute asset weights αa
i,j,t.

3. Putting Steps 1 and 2 together, compute the industry-specific tax rate on equipment and structures

(separately) as

τa
j,t =

N

∑
i=1

αa
i,j,tτ

a
i,t, a ∈ {E, S}

where there are N types of capital and ∑N
i=1 αi,j,t = 1.

I go through each step in turn.

Asset-Specific Tax Rates

Define the asset-specific METR within major category a ∈ {E, S} as

τa
i,t = 1 − 1 − τc

t
1 − ITCa

i,t − za
i,tτ

c
t

, (34)

where τc
t is the corporate tax rate, ITCi,t is the investment tax credit on asset i, and zi,t is the net present

value of tax depreciation allowances on asset i. Hence there are three components for each asset. First,
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the corporate tax rate τc
t is straightforward to obtain. Second, the investment tax credit ITCa

i,t. is slightly

more difficult. Investment tax credits vary substantially by asset type but have been irrelevant since the

Tax Reform Act of 1986. I take the ITC for each asset from House and Shapiro (2008), who study the effects

of bonus depreciation on investment across the same 36 assets from the BEA that I use to construct this

database. They originally obtained data on the ITC from Dale Jorgenson.

za
i,t is more difficult and requires some level of judgment. Suppose an asset has allowable depreciation

Da
i,t and define da

i,t as the share of the asset’s allowable depreciation under tax law each period. This is

nontrivial because companies are allowed to use different methods of depreciation. For each asset j, I

define the present value of depreciation allowances as

za
i,t =

∞

∑
t=0

(
1

1 + rk

)t
da

i,t.

Throughout, I assume that the required return on capital rk = 0.1. While this assumption is clearly not

innocuous, it is comparable to some of the recent literature. For example, Gormsen and Huber (2022) find

that the average required return from firms is around 15%, while Barro and Furman (2018) use a required

return of 10% (after inflation) in their analysis of the 2017 Tax Cuts and Jobs Act. Earlier literature on tax

policy from the 1980s (see, e.g., Auerbach (1983) and Jorgenson and Yun (1991)) tends to use lower discount

rates. zi,t varies both across assets and between tax eras. I discuss each era in chronological order. I relied

heavily on Brazell, Dworin, and Walsh (1989) for understanding each era.

ADR (1971-1981. The ADR period marked a simplification from the earlier Bulletin F period, where

there were hundreds of asset classes. However, the ADR period was still more complex than the tax rules

that would follow. Most assets were depreciated according to standards that were industry-specific, which

makes it challenging to map them to modern BEA tables. However, because the BEA asset categories are

relatively broad and the ADR-recommended live lengths are similar among the assets that would go in each

category, I simply assign the most common median life length within each category. Because the life length

determination requires some judgment, there is surely some degree of error. For equipment, I assume firms

follow a double declining balance method, while structures use straightline depreciation. I use the Treasury

publication “Asset Depreciation Range System” published in 1971 to assign life lengths.

ACRS (1982-1986). The ACRS simplified the ADR into eight asset classes and significantly decreased

depreciation lives. I assigned each BEA asset into its a class using IRS publication 534 and used double-

declining balance for all assets.

MACRS (1987-Present). The Tax Reform Act of 1986 changed depreciation schedules and got rid of the

ITC while retaining much of the simplicity of the ACRS era. House and Shapiro (2008) map each asset to
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a corresponding depreciation table in IRS Publication 946. I use their matching scheme and assumptions

about which depreciation method firms use. For example, most equipment is depreciated with the double-

declining balance method, while structures are often depreciated with the straightline method. Using the

House-Shapiro mapping schema, it is straightforward to compute zi,t. However, the U.S. government has

allowed firms to take bonus depreciation on certain types of capital investment. Defining θt as the allowable

bonus depreciation in year t, define the net present value of tax depreciation allowances as

z̃a
i,t


θ + (1 − θt)za

i,t if eligible

za
i,t if ineligible,

(35)

where z̃a
i,t takes the place of za

i,t in equation 34. At various points, θ = 1 for some assets, so the marginal

effective tax rate is zero. Conveniently, House and Shapiro (2008) also map whether or not each BEA asset

is eligible for bonus depreciation, so I use their mapping.

Weights

To get the industry-asset weights αa
i,j,t within each major asset category, I use the underlying detail data

from the BEA Fixed Asset Table. Each BEA industry has a matrix of assets for nominal investment, real

investment, and historical and current-cost net capital stocks and depreciation. I use real investment flows

from the current year to determine weights on each asset for each industry. That is,

αa
i,j,t =

xa
i,j,t

Xa
j,t

,

where xi,j,t is real investment in asset i from industry j within a major category a (equipment or structures)

and Xj,t is total investment in year t by industry j in the corresponding major asset category. I restrict atten-

tion to the 36 assets I obtain METRs for. Of course, I could have also used stocks as weights or previous year

investment flows or some rolling average of investment flows. The results are largely similar regardless.

Putting together weights weights and marginal tax rates, the marginal effective tax rate on industry j

for each asset in major category a ∈ {E, S} can then be defined as

τa
j,t =

36

∑
i=1

αa
i,j,tτ

a
i,t.

I do the exact same thing to get average investment prices for each industry. Using the BEA-NAICS bridge,

we then have prices and tax rates for each three-digit NAICS industry.
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B.3 Shock Construction

Here, I provide a more detailed description of the shock construction procedure used in the main text. The

approach is built on Fisher (2006). By assumption, the relative price of maintenance to investment is non-

stationary, so its first difference is stationary. I provide evidence of this for both equipment and structures

in Figures 9a and 9b, where I plot relative prices for equipment and structures for each industry in the

sample along with the median. First-differencing results in a stationary relative price. Similarly, I assume

that productivity growth and hours per worker are stationary. Again, there is evidence for this in Figures

9c and 9d.

The main text describes shock construction for relative prices, productivity, and hours. Essentially, I rely

on the time series properties of the data to construct permanent shocks. Shocks to relative prices can affect

all variables except other relative prices, shocks to productivity cannot affect relative prices but can affect

hours, and shocks to hours can only affect hours. An overdifferenced variable, by construction cannot have

a long-run effect. First-differenced relative prices and productivity are stationary, while hours per worker

is a stationary variable. Consequently, to implement Proposition 5, we can borrow from Fisher (2006) and

Shapiro and Watson (1988). For example, to get permanent shocks to relative prices for equipment, we

would run the following regression:

∆ log VE,j,t =αj + Tt +
p

∑
s=1

βVE ∆ log VE,j,t−s +
p−1

∑
s=0

βVS ∆2VS,j,t−s

+
p−1

∑
s=0

βProd∆2Prod.j,t−s +
p−1

∑
s=0

βHrs∆Log Hrsj,t−s + µE,j,t.

(36)

To get shocks to structures, we simply swap out VS,j,t for VE,j,t in (36). Then, with shocks to equipment,

µE,j,t and µS,j,t in hand, we can get productivity shocks from

∆Prod.j,t =αj + Tt +
p

∑
s=1

βVE ∆ log VE,j,t−s ++
p

∑
s=1

βVS ∆ log VS,j,t−s

+
p

∑
s=1

βProd∆Prod.j,t−s +
p−1

∑
s=0

βHrs∆Log Hrsj,t−s ++µE,j,t + µS,j,t + ηj,t.

(37)

The final regression uncovers the hours shock and is similar to the productivity regression, except it uses

the log level of hours as the dependent variable and has both the productivity and relative price shocks

entering contemporaneously. Each shock series is then the standardized residual within each industry.
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(a) Relative price of maintaining equipment (b) Relative price of maintaining structures

(c) TFP Growth (d) Hours per worker (2012 = 100)

Figure 9: Variables for constructing idiosyncratic permanent shocks to the relative price maintain-
ing equipment, relative price of maintenance in structures, productivity, and hours. Thick black
lines are yearly medians.
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C Empirical Results

(a) Equipment (b) Structures

Figure 10: Smooth local projections for the coefficient βi,h on the relative price of maintenance
to investment in (18) for up to ten years as described in main text along with a 90% confidence
interval. Standard errors from wild cluster bootstrap. Lag length p = 2.

(a) Equipment (b) Structures

Figure 11: Estimates for ωi,h for each capital type i at horizon h along with associated standard
errors, which are constructed via wild cluster bootstrap.
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C.1 Robustness

In this subsection, I present robustness checks by varying the polynomial fit and lag length. Point estimates

are largely similar across specifications. In Appendix D, I detail the procedure for estimating the SLPP IRFs

and show how it compares to the standard panel LP IRF.

Penalized to Line

(a) Equipment (b) Structures

Figure 12: Smooth local projections for the coefficient βi,h on the relative price of maintenance
to investment in (18) for up to ten years as described in main text along with a 90% confidence
interval. Standard errors from wild cluster bootstrap. Lag length p = 3.
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(a) Equipment (b) Structures

Figure 13: Smooth local projections for the coefficient βi,h on the relative price of maintenance
to investment in (18) for up to ten years as described in main text along with a 90% confidence
interval. Standard errors from wild cluster bootstrap. Lag length p = 4.

Penalized to Quadratic

(a) Equipment (b) Structures

Figure 14: Smooth local projections for the coefficient βi,h on the relative price of maintenance
to investment in (18) for up to ten years as described in main text along with a 90% confidence
interval. Standard errors from wild cluster bootstrap. Lag length p = 2 with the impulse response
penalized to a quadratic function.

51



(a) Equipment (b) Structures

Figure 15: Smooth local projections for the coefficient βi,h on the relative price of maintenance
to investment in (18) for up to ten years as described in main text along with a 90% confidence
interval. Standard errors from wild cluster bootstrap. Lag length p = 3 with the impulse response
penalized to a quadratic function.

(a) Equipment (b) Structures

Figure 16: Smooth local projections for the coefficient βi,h on the relative price of maintenance
to investment in (18) for up to ten years as described in main text along with a 90% confidence
interval. Standard errors from wild cluster bootstrap. Lag length p = 4 with the impulse response
penalized to a quadratic function.
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Penalized to Cubic

(a) Equipment (b) Structures

Figure 17: Smooth local projections for the coefficient βi,h on the relative price of maintenance
to investment in (18) for up to ten years as described in main text along with a 90% confidence
interval. Standard errors from wild cluster bootstrap. Lag length p = 2 with the impulse response
penalized to a cubic function.

(a) Equipment (b) Structures

Figure 18: Smooth local projections for the coefficient βi,h on the relative price of maintenance
to investment in (18) for up to ten years as described in main text along with a 90% confidence
interval. Standard errors from wild cluster bootstrap. Lag length p = 3 with the impulse response
penalized to a cubic function.
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(a) Equipment (b) Structures

Figure 19: Smooth local projections for the coefficient βi,h on the relative price of maintenance
to investment in (18) for up to ten years as described in main text along with a 90% confidence
interval. Standard errors from wild cluster bootstrap. Lag length p = 4 with the impulse response
penalized to a cubic function.

D Smooth Local Panel Projections

In this section, I outline the procedure for estimating smooth local projections for panel data. The idea

expands on Barnichon and Brownlees (2019), who first proposed smooth local projections for time series

data. Essentially, the same procedure can be followed. Consider a typical dynamic panel regression

yi,t+h = αi + τt + xi,tβh + νi,t+h,

for i = 1, . . . , N and t = 1, . . . , T, where αi is an individual fixed effect and τt is a time fixed effect. For

simplicity, let xi,t be the only variable of interest. As in Barnichon and Brownlees (2019), the goal is to make

the coefficient βh a smooth function of the impulse horizon. To do that, we simply use a B-spline basis

function to approximate the coefficient

βh ≈
K

∑
k=1

bkBk(h)

for K sufficiently large (in the paper, I use 13). Let Hmax denote the maximum forecast horizon. To set

notation, let yyyi,t denote the vector (yi,t, . . . , y{i,min{T,t+Hmax})
′ with length dt. Let xxxi,t for t = 1, . . . , T denote

the dt × K matrix with element (h, K) equal to Bk(h)xi,t. Next, let Y denote the stacked vector individual

vectors yi,t and X denote the stacked matrices for individuals xxxi,t. Finally, let θ denote the vector of B-splines
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coefficients (b1, . . . , bK). With that notation, the procedure is as follows.

1. Demean data with respect to relevant fixed effects. In the paper, that means demeaning yi,t+h −

yi,t−1 and demeaning the rest of the variables in a standard way with respect to NAICS code and

year.

2. Construct matrices Y and X . Note that maintaining order is crucial for the demeaned data. In

particular, demeaned data must be ordered within individual clusters by time and horizon.

3. Estimate ridge regression:

θ̂ = arg min
θ

{∥Y − X θ|2 + λθ′PPPθ}

=
(
X ′X + λPPP

)−1 X ′Y ,

where λ > 0 is a shrinkage parameter and P is a symmetric positive semidefinite penalty matrix. λ

determines the bias/variance trade-off.

4. Use k−fold cross validation by cluster and time to select a penalty parameter to penalize toward a

polynomial of order q.

5. Construct confidence bands using wild cluster bootstrap.

Note that there are only a couple of difference from Barnichon and Brownlees (2019). First, we must be

careful about maintaining the order of the data so that the demeaned matrices represent the local projection

correctly. Second, the k−fold validation procedure is different. Because we have panel data, it is best to

validate using both the cross-sectional and the time series dimension. In the paper, I use three folds for the

time dimension and five for clusters. Finally, we do inference with a wild cluster bootstrap. As of now,

we do not know the bias/variance trade-off between standard panel local projections and smooth local

projections.

In Figure 20, I plot the point estimate of the impulse response function for standard LP compared to

varying polynomial orders for the smooth local projection estimator. Evidently, as the polynomial order

increases, it converges to the standard LP estimator.
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(a) Equipment (b) Structures

Figure 20: Comparison between standard local projections and smooth local projections penalized
toward differing polynomial orders using the structures specification from the main text.

In Figure 21, I plot the standard local projections estimator for each of the specifications in the main

text along with associated confidence intervals. Evidently, only equipment is stable, while structures and

software similarly lumpy and it is difficult to reject a zero coefficient for the maintenance elasticity at certain

horizons. Part of the problem with the maintenance elasticity is that it requires inverting a confidence

interval, a procedure which can substantially blow up standard errors. That is quite clear for structures,

with explosive standard errors at horizons one and eight.
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(a) Equipment (b) Structures

Figure 21: Smooth local projections for the coefficient βi,h on the relative price of maintenance
to investment for up to ten years for standard local projections with a 90% confidence interval.
Standard errors constructed with wild cluster bootstrap.
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E Quantification

E.1 TCJA Analysis Calibration

Calibration of parameters is entirely from Barro and Furman (2018), with the exception of depreciation

rates. For one set of analyses, I use depreciation rates from Baldwin, Liu, and Tanguay (2015) and for

another, I use depreciation rates from the BEA.

E.2 Optimal Tax Rates

See the main text for a discussion of how I solved for ϕi and calibrated the government budget constraint.

To calibrate γi, I use the first-order condition for maintenance together with the steady-state capital

accumulation equation. Putting those together implies

δ̃i = γi

(
Vi

1
γiωi

) ωi
1+ωi

,

where Vi ≡
qi
pi

1−τc

1−τx
i

is the after-tax relative price of maintenance to equipment and δ̃i is an estimated depreci-

ation rate. Given Vi, δ̃i, and ωi, we can solve for γi. Because the paper implies that estimates of depreciation

are dependent on prevailing policy, which is captured in the term Vi, I use estimates of the relative price of

maintenance from 1980. That is because most estimates of depreciation used by the BEA for structures and

equipment come from Hulten and Wykoff (1981a) and Hulten and Wykoff (1981b). To remain consistent

with the data, I use the median relative prices of maintenance from the industry-level data in Section 4,

which implies VS ≈ 3 and VE ≈ 1.4. That, paired with δ̃E = 0.1 and δ̃S = 0.03 is sufficient to recover a value

for γi given an assumed maintenance elasticity for each capital type. In Figure 22, I plot the value of γi for

each of equipment and structures as a function of the assumed maintenance elasticity for ωi ∈ [0, 1].
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Figure 22: Calibration of γi for equipment and structures as a function of the maintenance elastic-
ity ωi. I assume that the values for steady-state depreciation are δ̃E = 0.1 and δ̃S = 0.03, and for
relative prices are VE = 1.4 and VS = 3.
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Parameter Value Source

rk 0.1

αE 0.175

αS 0.175

W [0, 1]× [0, 1] Grid of plausible maintenance elasticities

ωE 0.4 Figure 4 (for point estimate)

ωS 0.7 Figure 4 (for point estimate)

γE Set to match δ̃E = 0.1 and VE ≈ 1.4. See text below.

γS Set to match δ̃S = 0.03 and VS ≈ 3. See text below.

τc 0.27 Barro and Furman (2018)

χ Set to match H = 1/3 at initial tax rates

δ̃E 0.1

δ̃S 0.03

τinit
E 0.068 Own calculation (Initial tax rate for equipment)

τinit
S 0.197 Own calculation (Initial tax rate for structures)

ϕE 0.54 Own calculation

ϕE 0.2 Own calculation

Table 2: Calibrated parameters
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